在梯形ABCD中,AD平行BC,角D=90度,BC=CD=12,角ABE=45度AE=10,求CE的长?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 18:47:40

在梯形ABCD中,AD平行BC,角D=90度,BC=CD=12,角ABE=45度AE=10,求CE的长?
在梯形ABCD中,AD平行BC,角D=90度,BC=CD=12,角ABE=45度AE=10,求CE的长?

在梯形ABCD中,AD平行BC,角D=90度,BC=CD=12,角ABE=45度AE=10,求CE的长?
设CE=X ,AD=12-10+X,DE=12-X
RT三角形ADE中,
根据勾股定理得
(12-X)²+(12-10+x)²=10²
x=6

我真想知道E这个点在哪里。

怎么没图?
AE在哪?

过B作DA的垂线交DA的延长线于M,M为垂足,
延长DM到G,使MG=CE,连接BG,
易知四边形BCDM是正方形,
所以BC=BM,∠C=∠BMG=90°,EC=GM,
∴△BEC≌△BMG(SAS),
∴BG=BE,∠ABE=∠ABG=45°,
∴△ABE≌△ABG,AG=AE=10,
设CE=x,则AM=10-x,
AD=12-...

全部展开

过B作DA的垂线交DA的延长线于M,M为垂足,
延长DM到G,使MG=CE,连接BG,
易知四边形BCDM是正方形,
所以BC=BM,∠C=∠BMG=90°,EC=GM,
∴△BEC≌△BMG(SAS),
∴BG=BE,∠ABE=∠ABG=45°,
∴△ABE≌△ABG,AG=AE=10,
设CE=x,则AM=10-x,
AD=12-(10-x)=2+x,DE=12-x,
在Rt△ADE中,AE2=AD2+DE2,
∴100=(x+2)2+(12-x)2,
即x2-10x+24=0;
解得:x1=4,x2=6.
故CE的长为4或6.

收起