证明级数收敛 Un=n/((ln n)^n)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 05:52:15

证明级数收敛 Un=n/((ln n)^n)
证明级数收敛 Un=n/((ln n)^n)

证明级数收敛 Un=n/((ln n)^n)
你好!
lim(n→+∞) Un ^(1/n)
= lim(n→+∞) n^(1/n) / lnn
= lim(n→+∞) 1/lnn
= 0
所以原级数收敛

用基本不等式
1/(n+1)(证明见http://zhidao.baidu.com/question/149157572.html,我以前做的)。
所以
0<1/n-ln(1+1/n)<1/n-1/(n+1)=1/(n(n+1))<1/n^2,
再由比较判别法即得