设f(a)=sin²a+cosacos(π/3+a)-sin²(π/6-a) (1)分别求当a=-π/3,0,π/6时,f(a)的(2)求证f(a)的值是与a无关的定值.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 12:58:25

设f(a)=sin²a+cosacos(π/3+a)-sin²(π/6-a) (1)分别求当a=-π/3,0,π/6时,f(a)的(2)求证f(a)的值是与a无关的定值.
设f(a)=sin²a+cosacos(π/3+a)-sin²(π/6-a) (1)分别求当a=-π/3,0,π/6时,f(a)的
(2)求证f(a)的值是与a无关的定值.

设f(a)=sin²a+cosacos(π/3+a)-sin²(π/6-a) (1)分别求当a=-π/3,0,π/6时,f(a)的(2)求证f(a)的值是与a无关的定值.
1、
f(-π/3)=(-√3/2)²+(1/2)*1-1²=3/4+1/2-1=1/4
f(0)=0+1*1/2-(1/2)²=1/4
f(π/6)=(1/2)²+√3/2*0-0²=1/4
2、
f(a)=sin²a+cosa(cosπ/3cosa-sinπ/3sina)-(sinπ/6cosa-cosπ/6sina)²
=sin²a+cosa(1/2cosa-√3/2sina)-(1/2cosa-√3/2sina)²
=sin²a+1/2cos²a-√3/2sinacosa-1/4cos²a+√3/2sinacosa-3/4sin²a
=1/4sin²a+1/4cos²a
=1/4(sin²a+cos²a)
=1/4