设函数f(x)的定义域为R,当x>0时,f(x)>1,且对任意x,y∈R,都有f(x+y)=f(x)*f(y)(1)证明:f(0)=1(2)证明:f(x)在R上为增函数.第一问,我会做,主要是第2问。

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 06:22:43

设函数f(x)的定义域为R,当x>0时,f(x)>1,且对任意x,y∈R,都有f(x+y)=f(x)*f(y)(1)证明:f(0)=1(2)证明:f(x)在R上为增函数.第一问,我会做,主要是第2问。
设函数f(x)的定义域为R,当x>0时,f(x)>1,且对任意x,y∈R,都有f(x+y)=f(x)*f(y)
(1)证明:f(0)=1
(2)证明:f(x)在R上为增函数.
第一问,我会做,主要是第2问。

设函数f(x)的定义域为R,当x>0时,f(x)>1,且对任意x,y∈R,都有f(x+y)=f(x)*f(y)(1)证明:f(0)=1(2)证明:f(x)在R上为增函数.第一问,我会做,主要是第2问。
1.因为对任意x,y∈R,都有f(x+y)=f(x)*f(y) 所以f(0)=f(0)*f(0)所以f(0)=1
2.设x1大于x2 根据对任意x,y∈R,都有f(x+y)=f(x)*f(y)
所以 f(x1) - f(x2)= f((x1-x2) +x2))- f(x2)=f(x1-x2)*f(x2)-f(x2) 又因为x1大于x2 所以x1-x2>0 根据当x>0时,f(x)>1所以f(x1-x2)大于1 所以f(x1-x2)*f(x2)-f(x2)>0 因此f(x1) - f(x2)>0 所以f(x)在R上为增函数.

设函数f(x)的定义域为R,当x 设函数f(x)的定义域为R,且f(x)不等于0,当x>0,f(x)>1,对x,y属于R,有f(x+y)=f(x)f(y).设函数f(x)的定义域为R,且f(x)不等于0,当x>0时,f(x)>1,对x,y属于R,有f(x+y)=f(x)f(y).(1)求证:f9x)>0(2)解不等式 f(x)≤ 1/f(x+1 设f(x)是定义域为R的奇函数,g(x)是定义域为R的恒大于0的函数,且当x>0时,有f'(x)*g(x)<f(x)g'( 设函数y=f(x)是定义域为R的奇函数,当x 设f(x)是定义域为R的奇函数,g(x)是定义域为R的恒大于零的函数,设f(x)是定义域为R的奇函数,g(x)是定义域为R的恒大于零的函数,且当x>0时有f′(x)g(x)<f(x)g′(x).若f(1)=0,则 设函数f(x)的定义域为R,当x>0时,f(x)>1,且对任意xy属于R,均有f(x+y)=f(x)f(y),试判断函数f(x)单调性 设函数f(x)是定义域R上的周期为2的偶函数,当x的定义域为[0 ,1]时,f(x)=x+1,则f(二分之三)等于多少 设f(x)是定义域为绝对值x属于R,不等于0的函数.且f(x)=-f(x),且当x>0时.f(x)=x/(1-2^x)(1)求x<0时f(x)的表达式 (2)解不等式f(x)<-x/3是 f(-x)=-f(x) 设函数f(x)的定义域为R,当x>0时,f(x)>1.对任意的x,y∈R有f(x+y)=f(x)f(y)成立,解不等式:f(x) 设函数f(x)的定义域为R,若存在常数m>0,使|f(x)| 设函数f(x)的定义域为R,若存在常数m>0,使|f(x)| 设函数f(x)的定义域为R,对于任意实数x,y,总有f(x+y)=f(x)*f(y),当X>0,0 关于函数的一道题哈!函数f(x)是定义域为R的奇函数,当x>0时,f(x)=-x+1,则当x 【高一数学】设函数y=f(x)的定义域为R,当x>0时,f(x)>0,且对任意的a,b属于R,都有f(a+b)=f(a)+f(b),试判断f(x)在R上的单调性,并解关于x的不等式f(2x) 设函数fx=的定义域为R,对任意函数x,y都有f(x+y)=fx+fy,又当x>0时,fx= 如果函数f(x)的定义域为R,对任意实数a、b满足f(θ+b)f(x)的定义域为R,对任意实数a、b满足f(θ+b)=f(θ)·f(b).设当x<0时,f(x)>1,试解不等式f(x+5)>1/f(x)说明理由. 设函数F(x)的定义域为R,且为任意x,yf(x+y)=f(x)+f(y),而且,当x>0时,f(x)0时,f(x) 设函数f(x)的定义域为D,若存在非零实数l使得对于任意x∈M,有x+l∈D,且f(x+l)≥f(x),则称f(x)为M上的l高调函数 若定义域为R的函数f(x)是奇函数 当X∈【0,+∞)时f(x)=|X-a2|-a2且f(x)为R上的4高调函数,那