1、lim((4^n-3^(n+1)))除以((2^(2n+1))+3^n) 当n 趋向于无穷 求极限2、已知y=((x/2)乘以√((x^2+1))) - (1/2)乘以ln(x+√(x^2+1)),求y' 即对y求导3求y=3^(-x)的n阶导数4 lim (x/lnx-1/(x-1)) 当x趋向于1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 06:53:49
1、lim((4^n-3^(n+1)))除以((2^(2n+1))+3^n) 当n 趋向于无穷 求极限2、已知y=((x/2)乘以√((x^2+1))) - (1/2)乘以ln(x+√(x^2+1)),求y' 即对y求导3求y=3^(-x)的n阶导数4 lim (x/lnx-1/(x-1)) 当x趋向于1
1、lim((4^n-3^(n+1)))除以((2^(2n+1))+3^n) 当n 趋向于无穷 求极限
2、已知y=((x/2)乘以√((x^2+1))) - (1/2)乘以ln(x+√(x^2+1)),求y' 即对y求导
3求y=3^(-x)的n阶导数
4 lim (x/lnx-1/(x-1)) 当x趋向于1
1、lim((4^n-3^(n+1)))除以((2^(2n+1))+3^n) 当n 趋向于无穷 求极限2、已知y=((x/2)乘以√((x^2+1))) - (1/2)乘以ln(x+√(x^2+1)),求y' 即对y求导3求y=3^(-x)的n阶导数4 lim (x/lnx-1/(x-1)) 当x趋向于1
看图
解(1):原式=lim(n->∞){[1-3(3/4)^n]/[2+(3/4)^n]} (分子分母同除4^n)
=(1-3*0)/(2+0) (∵lim(n->∞)[(3/4)^n]=0)
=1/2;
解(2):∵y=(x/2)√(x²+1)-(1/2)ln[x+√(x²+1)]
∴y'=(...
全部展开
解(1):原式=lim(n->∞){[1-3(3/4)^n]/[2+(3/4)^n]} (分子分母同除4^n)
=(1-3*0)/(2+0) (∵lim(n->∞)[(3/4)^n]=0)
=1/2;
解(2):∵y=(x/2)√(x²+1)-(1/2)ln[x+√(x²+1)]
∴y'=(1/2)√(x²+1)-x²/[2√(x²+1)]-1/[2√(x²+1)]
=(1/2)√(x²+1)-(1/2)√(x²+1)
=0;
解(3):∵y=3^(-x)
∴y'=3^(-x)*(-ln3)
y''=3^(-x)*(-ln3)²
y'''=3^(-x)*(-ln3)³
.......
y的k阶导数=3^(-x)*(-ln3)^k
.......
故y=3^(-x)的n阶导数=3^(-x)*(-ln3)^n;
解(4):原式=lim(x->1){[x(x-1)-lnx]/[(x-1)lnx]} (分式通分)
=lim(x->1)[(2x²-x-1)/(x+xlnx)] (0/0型,应用罗比达法则)
=lim(x->1)[(4x-1)/(2+lnx)] (0/0型,应用罗比达法则)
=(4-1)/(2+0)
=3/2.
收起
1) 分子分母同除以4^n 再求 =1/2
2) 第一个按乘积的求导法则,第二项按复合函数,先ln,在()
3)=(-1)^n * 3^(-x)*(ln3)^n
4) 通分,用两次罗比他法则 =3/2