设函数f(x)连续 (1)证明:∫上a下-af(x)dx=1/2∫上a下-a[f(x)+f(-x)设函数f(x)连续(1)证明:∫上a下-af(x)dx=1/2∫上a下-a[f(x)+f(-x)]dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 15:54:19

设函数f(x)连续 (1)证明:∫上a下-af(x)dx=1/2∫上a下-a[f(x)+f(-x)设函数f(x)连续(1)证明:∫上a下-af(x)dx=1/2∫上a下-a[f(x)+f(-x)]dx
设函数f(x)连续 (1)证明:∫上a下-af(x)dx=1/2∫上a下-a[f(x)+f(-x)
设函数f(x)连续
(1)证明:∫上a下-af(x)dx=1/2∫上a下-a[f(x)+f(-x)]dx

设函数f(x)连续 (1)证明:∫上a下-af(x)dx=1/2∫上a下-a[f(x)+f(-x)设函数f(x)连续(1)证明:∫上a下-af(x)dx=1/2∫上a下-a[f(x)+f(-x)]dx
题目都给了这么大提示了还不愿做,懒的可以