M(4,-1)为椭圆x平方/40+y平方/=1内一点,过M作弦PQ,使PQ被M平分,求直线PQ的方程.y²/64

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 01:33:41

M(4,-1)为椭圆x平方/40+y平方/=1内一点,过M作弦PQ,使PQ被M平分,求直线PQ的方程.y²/64
M(4,-1)为椭圆x平方/40+y平方/=1内一点,过M作弦PQ,使PQ被M平分,求直线PQ的方程.
y²/64

M(4,-1)为椭圆x平方/40+y平方/=1内一点,过M作弦PQ,使PQ被M平分,求直线PQ的方程.y²/64
若直线是x=4,则显然PQ中点(4,0),不是M
所以斜率存在
y+1=k(x-4)
y=kx-(1+4k)
代入64x²+40y²=64*40
(64+40k²)x²-80k(1+4k)x+(1+4k)²-64*40=0
x1+x2=80k(1+4k)/(64+40k²)
中点横坐标=(x1+x2)/2=4
所以40k(1+4k)/(64+40k²)=4
10k+40k²=40k²+64
k=32/5
32x-5y-133=0