当x-0时求极限(√1+xsinx - √cosx ) /arcsin²x分子用等价无穷小 cos0=1 分子等于1/2x² 分母等价无穷小x² 结果等于1/2为什么不对

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 13:53:14

当x-0时求极限(√1+xsinx - √cosx ) /arcsin²x分子用等价无穷小 cos0=1 分子等于1/2x² 分母等价无穷小x² 结果等于1/2为什么不对
当x-0时求极限(√1+xsinx - √cosx ) /arcsin²x
分子用等价无穷小 cos0=1 分子等于1/2x² 分母等价无穷小x² 结果等于1/2为什么不对

当x-0时求极限(√1+xsinx - √cosx ) /arcsin²x分子用等价无穷小 cos0=1 分子等于1/2x² 分母等价无穷小x² 结果等于1/2为什么不对
当式子有加减运算时,是不能用等价无穷小的,比如这里√(1+xsinx)-√cosx不能等价为√(1+x^2)-√cosx
直接使用洛必达法则有困难,可以分子有理化后拆出部分式
lim(√(1+xsinx)-√cosx)/(arcsinx)^2
=lim(√(1+xsinx)-√cosx)/x^2
=lim(1+xsinx-cosx)/[x^2(√(1+xsinx)+√cosx)]
=lim(1+xsinx-cosx)/x^2*lim1/[(√(1+xsinx)+√cosx)]
=1/2lim(1+xsinx-cosx)/x^2
=1/2lim(sinx+xcosx+sinx)/2x(洛必达法则)
=1/4lim(2sinx/x+cosx)=3/4

点击放大: