如图,在菱形ABCD中,AB=10,∠BAD=60°,点M从点A出发,以每秒1个单位长的速度沿着AD边向点D移动,设点M移动的时间为t秒(0≤t≤10)《一》点N为BC上任意一点,在点M的移动过程中,线段MN是否一定可以将
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 17:53:26
如图,在菱形ABCD中,AB=10,∠BAD=60°,点M从点A出发,以每秒1个单位长的速度沿着AD边向点D移动,设点M移动的时间为t秒(0≤t≤10)《一》点N为BC上任意一点,在点M的移动过程中,线段MN是否一定可以将
如图,在菱形ABCD中,AB=10,∠BAD=60°,点M从点A出发,以每秒1个单位长的速度沿着AD边向点D移动,设点M移动的时间为t秒(0≤t≤10)
《一》点N为BC上任意一点,在点M的移动过程中,线段MN是否一定可以将菱形分割成面积相等的两部分?并说明理由;
《二》点N从点B以每秒2个单位长的速度沿着BC边向点C移动(于点M的出发时刻相同),在什么时刻,梯形ABNM的面积最大?并求出面积的最大值;
《三》点N从点B以每秒a(a≥2)个单位长的速度沿着射线BC方向(可以超越C点)移动(与点M的出发时刻相同),过点M作MP平行雨AB,交BC于点P,当△MPN全等于△ABC时,设△MPN与菱形ABCD重叠部分的面积为S,求出用t表示S的关系式,并求当S=9√3时,a的值.只要第3问
如图,在菱形ABCD中,AB=10,∠BAD=60°,点M从点A出发,以每秒1个单位长的速度沿着AD边向点D移动,设点M移动的时间为t秒(0≤t≤10)《一》点N为BC上任意一点,在点M的移动过程中,线段MN是否一定可以将
第一问 是的 因为M在移动过程中,总有一点 使得AM=NC 此时 菱形被分割成2个面积一样的梯形. 证明 在AM=NC 这个条件下 2个图形面积相等就可以
第二问,可以看出 移动过程中 BN=2AM 所以当 BN达到最大 =BC时 面积最大,此时 AM=5 面积是菱形面积的一半
第三问 可以指定 BN=at 等三角形全等时 PN=BC=10 所以 BN-AM=10 这时三角形的高是一定的 等于5倍根号3 底重叠的部分等于 PN-(BN-BC)=20-at
面积S = 1/2 (20-at)*5倍根号3 求值部分可以自己代入
(1)设:BN=a,CN=10-a(0≤a≤10)
因为,点M从点A以每秒1个单位长的速度沿着AD边向点D移动,点M移动的时间为t秒(0≤t≤10)
所以,AM=1×t=t(0≤t≤10),MD=10-t(0≤t≤10).
所以,梯形AMNB的面积=(AM+BN)×菱形高÷2=(t+a)×菱形高÷2;
梯形MNCD的面积=(MD+NC)×菱形高÷2=[(10-t)+...
全部展开
(1)设:BN=a,CN=10-a(0≤a≤10)
因为,点M从点A以每秒1个单位长的速度沿着AD边向点D移动,点M移动的时间为t秒(0≤t≤10)
所以,AM=1×t=t(0≤t≤10),MD=10-t(0≤t≤10).
所以,梯形AMNB的面积=(AM+BN)×菱形高÷2=(t+a)×菱形高÷2;
梯形MNCD的面积=(MD+NC)×菱形高÷2=[(10-t)+(10-a)]×菱形高÷2
当梯形AMNB的面积=梯形MNCD的面积时,
即t+a=10,(0≤t≤10),(0≤a≤10)
所以,当t+a=10,(0≤t≤10),(0≤a≤10)时,可出现线段MN一定可以将菱形分割成面积相等的两部分.
(2)点N从点B以每秒2个单位长的速度沿着BC边向点C移动,设点N移动的时间为t,可知0≤t≤5,
因为AB=10,∠BAD=60°,所以菱形高=5 3 ,
AM=1×t=t,BN=2×t=2t.
所以梯形ABNM的面积=(AM+BN)×菱形高÷2=3t×5 3 ×1 2 =15 2 3 t(0≤t≤5).
所以当t=5时,梯形ABNM的面积最大,其数值为75 3 2 .
(3)当△MPN≌△ABC时,
则△ABC的面积=△MPN的面积,则△MPN的面积为菱形面积的一半为25 3 ;
因为要全等必有MN∥AC,
∴N在C点外,所以不重合处面积为 3 ×(at-10)2×1 4
∴重合处为S=25 3 - 3 ×(at-10)2 4 ,
当S=0时即MN在CD上所以a=2.
收起
(1)设:BN=a,CN=10-a(0≤a≤10)
因为,点M从点A以每秒1个单位长的速度沿着AD边向点D移动,点M移动的时间为t秒(0≤t≤10)
所以,AM=1×t=t(0≤t≤10),MD=10-t(0≤t≤10).
所以,梯形AMNB的面积=(AM+BN)×菱形高÷2=(t+a)×菱形高÷2;
梯形MNCD的面积=(MD+NC)×菱形高÷2=[(10-t)+...
全部展开
(1)设:BN=a,CN=10-a(0≤a≤10)
因为,点M从点A以每秒1个单位长的速度沿着AD边向点D移动,点M移动的时间为t秒(0≤t≤10)
所以,AM=1×t=t(0≤t≤10),MD=10-t(0≤t≤10).
所以,梯形AMNB的面积=(AM+BN)×菱形高÷2=(t+a)×菱形高÷2;
梯形MNCD的面积=(MD+NC)×菱形高÷2=[(10-t)+(10-a)]×菱形高÷2
当梯形AMNB的面积=梯形MNCD的面积时,
即t+a=10,(0≤t≤10),(0≤a≤10)
所以,当t+a=10,(0≤t≤10),(0≤a≤10)时,可出现线段MN一定可以将菱形分割成面积相等的两部分.
(2)点N从点B以每秒2个单位长的速度沿着BC边向点C移动,设点N移动的时间为t,可知0≤t≤5,
因为AB=10,∠BAD=60°,所以菱形高=5
3
,
AM=1×t=t,BN=2×t=2t.
所以梯形ABNM的面积=(AM+BN)×菱形高÷2=3t×5
3
×
1
2
=
15
2
3
t(0≤t≤5).
所以当t=5时,梯形ABNM的面积最大,其数值为
753
2
.
(3)当△MPN≌△ABC时,
则△ABC的面积=△MPN的面积,则△MPN的面积为菱形面积的一半为25
3
;
因为要全等必有MN∥AC,
∴N在C点外,所以不重合处面积为
3
×(at-10)2×
1
4
∴重合处为S=25
3
-
3×(at-10)2
4
,
当S=0时,即PM在CD上,
∴a=2.
抱歉,我不会打根号,空的地儿将就着看吧
各位网友对不住了
O(∩_∩)O谢谢
收起