求不定积分,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 05:21:50

求不定积分,
求不定积分,

求不定积分,
令x=4sint,则x∈[-4,4]时,t∈[-π/2,π/2]
√(16-x²)=4cost,dx=4costdt
∫(-4,4) (1+x)√(16-x²) dx
=∫(-π/2,π/2) (1+4sint)*4cost*4costdt
=∫(-π/2,π/2) 16cos²t+32sin2t dt
=∫(-π/2,π/2) 4(cos2t+1)+16sin2t d(2t)
=4sin2t+8t-16cos2t |(-π/2,π/2)
=(0+4π+16)-(0-4π+16)
=8π

不定积分= 1/6 Sqrt[16 - x^2] (-32 + 3 x + 2 x^2) + 8 ArcSin[x/4]
定积分= 8π
难点: 原函数=-(-4 + x) (1 + x) (4 + x)/Sqrt[16 - x^2] 能得到这个,就能积分了!

原式=∫[-4,4] √(16-x^2)dx+∫[-4,4] x√(16-x^2)dx (注意后面一项的被积函数是奇函数,积分区间关于原点对称,因此积分值是0)
=∫[-4,4] √(16-x^2)dx (几何意义是半径为4的半圆的面积)
=π*4^2/2
=8π