过椭圆2x²+y²=2的一个焦点的直线交椭圆于P,Q两点,求△POQ面积的最大值?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 21:56:49

过椭圆2x²+y²=2的一个焦点的直线交椭圆于P,Q两点,求△POQ面积的最大值?
过椭圆2x²+y²=2的一个焦点的直线交椭圆于P,Q两点,求△POQ面积的最大值?

过椭圆2x²+y²=2的一个焦点的直线交椭圆于P,Q两点,求△POQ面积的最大值?
如果是求三角形OAB的面积的最大值,那么
2x²+y²=2
x²+y²/2=1
a²=2,b²=1
c²=2-1=1
c=1
我们取一种情况,过点(0,1)
设直线为y=kx+1
代入2x²+y²=2
2x²+k²x²+2kx+1=2
(k²+2)x²+2kx-1=0
x1+x2=-2k/(k²+2)
x1*x2=-1/(k²+2)
点O到直线AB的距离=1/√(1+k²)
AB=√(1+k²)[(x1+x2)²-4x1*x2]
S=1/2×1/√(1+k²)×√(1+k²)[4k²/(k²+2)²+4/(k²+2)]
=√[k²/(k²+2)²+1/(k²+2)]
令t=k²/(k²+2)²+1/(k²+2)
t=k²/(k²+2)²+(k²+2)/(k²+2)²
=2(k²+2-1)/(k²+2)²
=2/(k²+2)-2/(k²+2)²
令u=1/(k²+2)
t=2u-2u²=-2(u²-u)=-2(u-1/2)²+1/2
当u=1/2即k=0时t最大值=1/2
S最大值=√2/2