已知a-b=2+√3,b-c=2-√3,求代数式a²+b²+c²-ab-ac-bc的值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 09:21:01

已知a-b=2+√3,b-c=2-√3,求代数式a²+b²+c²-ab-ac-bc的值
已知a-b=2+√3,b-c=2-√3,求代数式a²+b²+c²-ab-ac-bc的值

已知a-b=2+√3,b-c=2-√3,求代数式a²+b²+c²-ab-ac-bc的值
a-b=2+√3,b-c=2-√3
相加
a-c=4
原式=(2a²+2b²+2c²-2ab-2bc-2ac)/2
=[(a²-2ab+b²)+(b²-2bc+c²)+(c²-2ac+a²)]/2
=[(a-b)²+(b-c)²+(a-c)²]/2
=(4+3+4√3+4-4√3+3+16)/2
=15