用中值定理,单调性证明不等式:当x>0时,1+x/2>√(1+x)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 08:26:23

用中值定理,单调性证明不等式:当x>0时,1+x/2>√(1+x)
用中值定理,单调性证明不等式:当x>0时,1+x/2>√(1+x)

用中值定理,单调性证明不等式:当x>0时,1+x/2>√(1+x)
构造函数f(x)=(1+x/2)-(1+x)^(1/2)则f'(x)={[√(1+x) ]-1}/2[√(1+x) ] >0,故函数f(x)在[0,+∞)上单调递增,
故x>0时,f(x)>f(0)=0故x>0时,(1+x/2)>(1+x)^(1/2)