xy'-y=(y2-x2)^(-1/2)求微分方程的通解,求步骤?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 05:27:31
xy'-y=(y2-x2)^(-1/2)求微分方程的通解,求步骤?
xy'-y=(y2-x2)^(-1/2)求微分方程的通解,求步骤?
xy'-y=(y2-x2)^(-1/2)求微分方程的通解,求步骤?
变形得:x^2(y'-y/x)=((y/x)^2-1)^(-1/2)
设y/x=u,y=xu ,y'=u+xu',代入得:
x^3u‘=(u)^2-1)^(-1/2)
或:(u)^2-1)^(1/2)du=dx/x^3 ,积分得:
(u/2)√(u^2-1)-(1/2)ln(x+√(u^2-1))=-1/x^2+C
(y/2x^2)√(y^2-x^2)-(1/2)ln(x+√(y^2-x^2)/x)=-1/x^2+C
(y/x)'=y'x-y
(y/x)'=(y^2-x^2)^(-1/2)=(x^2((y/x)^2-1))^(-1/2)
设y/x=u
u'=[x^2(u^2-1)]^(-1/2)
(u^2-1)^(1/2)du=x^(-1)dx
两边积分
其中:左=
u= secz,du= secztanz dz,u > 1
∫ √(u²...
全部展开
(y/x)'=y'x-y
(y/x)'=(y^2-x^2)^(-1/2)=(x^2((y/x)^2-1))^(-1/2)
设y/x=u
u'=[x^2(u^2-1)]^(-1/2)
(u^2-1)^(1/2)du=x^(-1)dx
两边积分
其中:左=
u= secz,du= secztanz dz,u > 1
∫ √(u² - 1) dx
= ∫ |tanz| * (secztanz dz)
= ∫ secz(sec²z - 1) dz
= ∫ sec³z dz - ∫ secz dz
= (1/2)secztanz + (1/2)∫ secz dz - ∫ secz dz
= (1/2)secztanz - (1/2)ln|secz + tanz| + C
= (u/2)√(u² - 1) - (1/2)ln|u + √(u² - 1)| + C
故:
(u/2)√(u² - 1) - (1/2)ln|u + √(u² - 1)| =ln|x|+C
再将y/x=u y=ux代入上式即可!!
收起