设数列{an}前n项和为Sn,且(3-m)Sn+2man=m+3(n属于N*).其中m为实常数,m不等于-3且m不等于0.1,求证:{an}是等比数列.2,若数列{an}的公比满足q=f(m)且b1=a1,bn=3/2f(bn-1)(n属于N*,n大于等于2),求{bn}的通

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 07:49:32

设数列{an}前n项和为Sn,且(3-m)Sn+2man=m+3(n属于N*).其中m为实常数,m不等于-3且m不等于0.1,求证:{an}是等比数列.2,若数列{an}的公比满足q=f(m)且b1=a1,bn=3/2f(bn-1)(n属于N*,n大于等于2),求{bn}的通
设数列{an}前n项和为Sn,且(3-m)Sn+2man=m+3(n属于N*).其中m为实常数,m不等于-3且m不等于0.
1,求证:{an}是等比数列.
2,若数列{an}的公比满足q=f(m)且b1=a1,bn=3/2f(bn-1)(n属于N*,n大于等于2),求{bn}的通项公式.
3,若m=1时,设Tn=a1+2a2+3a3+...+nan(n属于N*),是否存在最大的正整数k,使得对任意n属于N*均有Tn大于k/8成立,若存在求出k的值,若不存在请说明理由.

设数列{an}前n项和为Sn,且(3-m)Sn+2man=m+3(n属于N*).其中m为实常数,m不等于-3且m不等于0.1,求证:{an}是等比数列.2,若数列{an}的公比满足q=f(m)且b1=a1,bn=3/2f(bn-1)(n属于N*,n大于等于2),求{bn}的通
1.
(3-m)Sn+2man=m+3 (1)
当n=1时,求得a1=1
当n=n-1时,
(3-m)S(n-1)+2ma(n-1)=m+3 (2)
第一式减去第二式得:
(3-m)an+2m(an-a(n-1))=0
即:an/a(n-1)=2m/(m+3)
所以{an}是等比数列,公比为2m/(m+3)
an=[2m/(m+3)]^(n-1)
2.
bn=3/2·2b(n-1)/[b(n-1)+3]=3b(n-1)/[b(n-1)+3]
所以:3/bn=1+3/b(n-1)
即:3/bn-3/b(n-1)=1
{3/bn}为等差数列,公差d=1,首项3/b1=3
3/bn=3+(n-1)=n+2
bn=3/(n+2)
3.
m=1,q=2m/(m+3)=0.5
an=(1/2)^(n-1)
Tn=a1+2a2+3a3+...+nan
0.5Tn=a2+2a3+3a4+……+(n-1)an+na(n+1)
0.5Tn=a1+a2+a3+……+an-na(n+1)
Tn=2[Sn-na(n+1)]=2Sn-2na(n+1)=2[2-(n+2)/2^n]
假设存在,Tn>k/8
k

设数列{an}的前n项和为Sn,且(3-m)Sn+2MAn=m+3(m∈N*),其中m为常数且m≠-3,求证:{an}为等比数列. 设数列an是等比数列,其前n项和为Sn ,且Sn=3a3 求公比q 数列{an}前n项和为Sn,且(3-m)Sn+2man=m+3(n∈N*).其中m为实常数,m≠-3且m≠0. (1)求证:{an}是设数列{an}前n项和为Sn,且(3-m)Sn+2man=m+3(n∈N*).其中m为实常数,m≠-3且m≠0.(1)求证:{an} 设数列An的前n项和为Sn,且a1=1,An+1=1/3Sn,求数列an的通项公式. 等比数列证明题设数列an的前n项和为Sn,且Sn=4an-3怎么证明数列an是等比数列 数列{an}前n项和为Sn且(3-m)Sn+2man=m+3(n属于N*)其中m为常数且m 设数列{an}的前n项和为Sn,已知首项a1=3,且Sn+1+Sn=2an+1,试求此数列的通项公式an及前n项和Sn 设数列an前n项和为Sn,且(3-m)Sn+2man=m+3,其中m为常数,且m不等于—3,求证an是等比数列 数列{an}前n项和为Sn,且2Sn+1=3an,求an及Sn 设数列{an}为正项数列,前n项的和为Sn,且an,Sn,an^2成等差数列,求an通项公式 数列{an},中,a1=1/3,设Sn为数列{an}的前n项和,Sn=n(2n-1)an 求Sn 设数列{an}前n项和为Sn,若s1=1,s2=2,且Sn+1-3Sn+2Sn-1=0(n>=2,且n∈N^*)判断数列是不是等比数列 设数列{an}前n项和为Sn,若s1=1,s2=2,且Sn+1-3Sn+2Sn-1=0(n>=2,且n∈N^*)判断数列是不是等比数列 设数列{an}的前n项和为Sn,且Sn=9n-n^2设b=1/n(12-an),数列{bn}的前n项和为Tn,若对任意的n属于整数,均有Tn>(m^2-3m+7)/20,求m的取值范围. 已知数列{an}的前N项和为Sn 且an+1=Sn-n+3,a1=2,设Bn=n/Sn-n+2前N项和为Tn 求证Tn 小于4/3 设数列{an}中,a1=1且an+1=3an+4,求证{an+2}是等比数列求{an}的前n项和为Sn 设数列an的前n项和为Sn,若Sn=1-2an/3,则an= 已知数列an的前n项和为Sn,且An=3^n+2n,则Sn等于