椭圆x^2/a^2+y^2/b^2=1(a>b>0)与直线x+y-1=0相交于P,Q两点,且OP⊥OQ(O为原点),求1/a^2+1/b^2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 08:44:37

椭圆x^2/a^2+y^2/b^2=1(a>b>0)与直线x+y-1=0相交于P,Q两点,且OP⊥OQ(O为原点),求1/a^2+1/b^2
椭圆x^2/a^2+y^2/b^2=1(a>b>0)与直线x+y-1=0相交于P,Q两点,且OP⊥OQ(O为原点),求1/a^2+1/b^2

椭圆x^2/a^2+y^2/b^2=1(a>b>0)与直线x+y-1=0相交于P,Q两点,且OP⊥OQ(O为原点),求1/a^2+1/b^2
设P(x1,y1)Q(x2,y2),x+y-1=0带入椭圆方程得(a²+b²)x²-2a²x+a²-a²b²=0,
x1+x2=2a²/(a²+b²),x1x2=(a²-a²b²)/(a²+b²).
y1y2=(1-x1)(1-x2)=1-(x1+x2)+x1x2=(b²-a²b²)/(a²+b²).
OP垂直OQ得,x1x2+y1y2=0,即(a²-a²b²)/(a²+b²)+(b²-a²b²)/(a²+b²)=0.
整理得1/a^2+1/b^2=2.