已知动点P到两定点A(1,0),B(2,0)的距离的比为根号2/2,(1)求P的轨迹C的方程(2)是否存在过点A(1,0)的直线l交轨迹C于点M和N使得三角形MON的面积为根号3/2(O为坐标原点),若存在,求l的方程,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 06:01:27

已知动点P到两定点A(1,0),B(2,0)的距离的比为根号2/2,(1)求P的轨迹C的方程(2)是否存在过点A(1,0)的直线l交轨迹C于点M和N使得三角形MON的面积为根号3/2(O为坐标原点),若存在,求l的方程,
已知动点P到两定点A(1,0),B(2,0)的距离的比为根号2/2,(1)求P的轨迹C的方程(2)是否存在过点A(1,0)的直线l交轨迹C于点M和N使得三角形MON的面积为根号3/2(O为坐标原点),若存在,求l的方程,若不存在说明理由

已知动点P到两定点A(1,0),B(2,0)的距离的比为根号2/2,(1)求P的轨迹C的方程(2)是否存在过点A(1,0)的直线l交轨迹C于点M和N使得三角形MON的面积为根号3/2(O为坐标原点),若存在,求l的方程,
(1)设P(x,y)
((x-1)^2+y^2)^1/2/((x-2)^2+y^2)^1/2=(1/2)^1/2
((x-1)^2+y^2)/((x-2)^2+y^2)=1/2
2(x-1)^2+2y^2=(x-2)^2+y^2
2x^2-4x+2+2y^2=x^2-4x+4+y^2
x^2+y^2=2
P点的轨迹方程为以(0,0)为原点,2^1/2为半径的圆
(2)假设存在直线,设y=k(x-1)
kx-y-k=0
圆心(0,0)到直线的距离,
d=/k//(k^2+1)^1/2
S=1/2*MN*d=1/2*2*(2-d^2)^1/2*d=3^1/2/2
d=6^1/2/2ord=2^1/2/2
d=6^1/2/2时,k无解
d=2^1/2/2时,k=1,ork=-1
y=x-1,ory=-(x-1)=-x+1
k不存在时,x=1,S=1,舍去.
所以l:y=x-1ory=-x+1

已知动点P到定点A(8,0)的距离等于P到定点B(2,0)距离的2倍,求动点P的轨迹方程 已知动点P到定点a(8,0)的距离等于p到定点b(2,0)距离的两倍,问动点p的轨迹方程 已知两定点A(-2,0)B(1,0),如果动点P满足|PA|=2|PB|,则点P的轨迹所包围的面积等于? 已知动点P与平面上两定点A(-√2,0),B(√2,0)连线的斜率的积为定值1/2 已知动点P与平已知动点P与平面上两定点A(-√2,0),B(√2,0)连线的斜率的积为定值1/2已知动点P与平面上两定点A(-√2,0),B(√ 已知两定点A(-2,0),B(1,0),动点P满足/PA/=2/PB/,求动点P的轨迹方程? 已知俩定点A(-2,0),B(1,0).动点p满足|pA|=2|pB|求p动点的轨迹方程 设A、B坐标分别为A(1,2).B(2,5),求到A、B两点距离相等的点的轨迹方程.1、已知两定点A,B距离为6,求到两定点的距离平方和为100的动点的轨迹方程.2、求到直线x-y-1=0的距离等于4根号2的动点P的轨迹 已知两定点A(-2,0),B(2,0)且动点P使PA⊥PB,求P的轨迹方程 已知两定点A(-2,0),B(2,0) 且动点P使PA⊥PB,求P的轨迹方程 不要用斜率做 已知平面内两定点A、B,|AB|=2a,如果动点P到A的距离和到点B的距离之比是2:1,求动点的轨迹. 已知动点P到两个定点A(2,0),B(-2,0)距离之比|PA|:|PB|=0.5,求动点P的运动轨迹 已知平面内的动点p到两定点M(-2,0)N(1,0)的距离之2:1求p轨迹方程 已知动点P到两定点M(-1,0),N(1,0)距离之比为根号2,求动点P的轨迹的C方程 圆的方程 (8 9:52:50)已知动点P到定点 A(8,0)的距离等于P到定点B(2,0)距离的两倍,求动点P的轨迹方程.  已知动点p到定点a(8,0)的距离等于p到定点b(2,0)距离的两倍,求动点p的轨迹方程 已知动点P到定点a(8,0)的距离等于p到定点b(2,0)距离的两倍,问动点p的轨迹方程从圆的一般方程考虑 在平面上,已知定点A,B且|AB|=2a,如果动点P到点A的距离和到B点的距离之比为2:1,那么动点P移动会形成什么曲线 已知动点P到定点A(2,0)的距离等于2 求动点P的轨迹方程