已知圆C:x²+y²;-2x+4y-4=0,问是否存在斜率为1的直线L,使得L被圆C截得的弦AB为直径的圆经过原点,若存在,写出直线L的方程;若不存在,说明理由,(若存在写出直线的一般是)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 06:09:16
已知圆C:x²+y²;-2x+4y-4=0,问是否存在斜率为1的直线L,使得L被圆C截得的弦AB为直径的圆经过原点,若存在,写出直线L的方程;若不存在,说明理由,(若存在写出直线的一般是)
已知圆C:x²+y²;-2x+4y-4=0,问是否存在斜率为1的直线L,使得L被圆
C截得的弦AB为直径的圆经过原点,若存在,写出直线L的方程;若不存在,说明理由,(若存在写出直线的一般是)
已知圆C:x²+y²;-2x+4y-4=0,问是否存在斜率为1的直线L,使得L被圆C截得的弦AB为直径的圆经过原点,若存在,写出直线L的方程;若不存在,说明理由,(若存在写出直线的一般是)
圆 C:(x-1)^2 + (y+2)^2 = 9
设 L:y = x + a
x^2+x^2+2ax+a^2-2x+4x+4a-4=0
2x^2 + (2a+2)x + a^2+4a-4 =0
x1,2 = 1/2 * (-a-1 +/- 根号(-a^2-6a+9))
y1,2 = 1/2 * (a-1 +/- 根号(-a^2-6a+9))
|x2-x1| = 根号(-a^2-6a+9)
|y2-y1| = 根号(-a^2-6a+9)
(x2+x1)/2 = 1/2 * (-a-1)
(y2+y1)/2 = 1/2 * (a-1)
弦AB为直径的圆的圆心为 P(1/2 * (-a-1),1/2 * (a-1))
因为弦AB为直径的圆经过原点,所以 4PO^2 = |x2-x1|^2 + |y2-y1|^2
4(1/4 * (a+1)^2 + 1/4 * (a-1)^2) = 2(-a^2-6a+9)
a^2 + 3a - 4 = 0
(a-1)(a+4) = 0.
a1 = -4,a2 = 1.
注意需要 -a^2-6a+9 >= 0 不然没有交点,所以
a = -4,-a^2-6a+9 = -16+24+9 > 0
a = 1,-a^2-6a+9 > 0
所以两个都可以
L:x - y + 1 = 0 或者 x - y - 4 = 0.