函数z=f(x,y)由方程2sin(x+2y-3z)=x+2y-3z所确定,求dz
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 13:49:47
函数z=f(x,y)由方程2sin(x+2y-3z)=x+2y-3z所确定,求dz
函数z=f(x,y)由方程2sin(x+2y-3z)=x+2y-3z所确定,求dz
函数z=f(x,y)由方程2sin(x+2y-3z)=x+2y-3z所确定,求dz
先两边微分
2cos(x+2y-3z)(dx+2dy-3dz)=(dx+2dy-3dz)
cos(x+2y-3z)=1/2
x+2y-3z=π/3 + 2kπ(三维空间平行平面集合,其实等於几都无所谓,一会再微也没了)
dx+2dy-3dz=0
dz=(dx+2dy)/3
方程两边对x求偏导: 2cos(x+2y-3z)(1-3Z'x)=1-3Z'x, 解得:Z'x=1/3,
方程两边对y求偏导: 2cos(x+2y-3z)(2-3Z'y)=2-3Z'y, 解得:Z'y=2/3
因此dz=Z'xdx+Z'ydy=dx/3+2dy/3
两边全微分。。。