多元函数积分学的题设f(x,y)连续,且f(x,y)=xy+∫∫(D)f(u,v)dudv,其中D是由y=0,y=x^2,x=1围城的区域,则f(x,y)=?A.xy B.2xy C.xy+1/8 D.xy+1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 01:33:30
多元函数积分学的题设f(x,y)连续,且f(x,y)=xy+∫∫(D)f(u,v)dudv,其中D是由y=0,y=x^2,x=1围城的区域,则f(x,y)=?A.xy B.2xy C.xy+1/8 D.xy+1
多元函数积分学的题
设f(x,y)连续,且f(x,y)=xy+∫∫(D)f(u,v)dudv,其中D是由y=0,y=x^2,x=1围城的区域,则f(x,y)=?
A.xy B.2xy C.xy+1/8 D.xy+1
多元函数积分学的题设f(x,y)连续,且f(x,y)=xy+∫∫(D)f(u,v)dudv,其中D是由y=0,y=x^2,x=1围城的区域,则f(x,y)=?A.xy B.2xy C.xy+1/8 D.xy+1
C.xy+1/8
两边在区域内再积一次分.
额= = 我才初三。。