如图,四棱柱ABCD-A1B1C1D1中,A1D⊥平面ABCD,底面ABCD是边长为1的正方形,侧棱AA1=2(Ⅰ)求证:C1D∥平面ABB1A1;(Ⅱ)求直线BD1与平面A1C1D所成角的正弦值;(Ⅲ)求二面角D-A1C1-A的余弦值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 00:34:02
如图,四棱柱ABCD-A1B1C1D1中,A1D⊥平面ABCD,底面ABCD是边长为1的正方形,侧棱AA1=2(Ⅰ)求证:C1D∥平面ABB1A1;(Ⅱ)求直线BD1与平面A1C1D所成角的正弦值;(Ⅲ)求二面角D-A1C1-A的余弦值
如图,四棱柱ABCD-A1B1C1D1中,A1D⊥平面ABCD,底面ABCD是边长为1的正方形,侧棱AA1=2
(Ⅰ)求证:C1D∥平面ABB1A1;
(Ⅱ)求直线BD1与平面A1C1D所成角的正弦值;
(Ⅲ)求二面角D-A1C1-A的余弦值
如图,四棱柱ABCD-A1B1C1D1中,A1D⊥平面ABCD,底面ABCD是边长为1的正方形,侧棱AA1=2(Ⅰ)求证:C1D∥平面ABB1A1;(Ⅱ)求直线BD1与平面A1C1D所成角的正弦值;(Ⅲ)求二面角D-A1C1-A的余弦值
(I)
连接AB1,
∵AD∥B1C1且AD=B1C1
∴ADC1B1是平行四边形
∴C1D∥AB1
又∵AB1包含于平面ABB1A1
故C1D∥平面ABB1A1
(II)
连接B1D1交A1C1于O1,连接BD交AC于O
由于底面是正方形
故BD⊥AC,B1D1⊥A1C1
进而BD⊥A1C1
又A1D⊥BD,且A1D⊥B1D1
∴BD与B1D1均垂直于平面A1C1D
BD=√2,O1D1=√2/2
A1D=√3
BD1=√(1+3+2^2)=2√2
故正弦值为(BD+O1D1)/BD1=3/4
(III)
A到平面A1C1D的距离即OD=√2/2
故正弦值为OD/AA1=√2/4
∴余弦值为√14/4
如图,已知正四棱柱ABCD-A1B1C1D1中,2AB=BB1,
如图,在直四棱柱ABCD-A1B1C1D1中,各棱长都为1 (1)求证:AC⊥BD1
如图,四棱柱ABCD-A1B1C1D1中,A1D⊥平面ABCD,底面ABCD是边长为1的正方形,侧棱AA1=2. (Ⅰ)求证:C1D
如图11,在四棱柱ABCD—A1B1C1D1.(内详有图)
如图,在四棱柱ABCD-A1B1C1D1中,D1D垂直于底面ABCD,底面ABCD是正方形,且AB=1,D1D=根2 求直线D...如图,在四棱柱ABCD-A1B1C1D1中,D1D垂直于底面ABCD,底面ABCD是正方形,且AB=1,D1D=根2 求直线D1B与平面ABCD所成角的
如图,正四棱柱ABCD-A1B1C1D1中,AA1=2AB=4,点E在CC1上,且C1E=3EC求四面体A1BDE体积
如图,在四棱柱ABCD–A1B1C1D1中,已知平面AA1C1C垂直于平面ABCD,且AB=BC=CA=根号3,AD=CD=1(1)求证:BD垂直于AA1(2)若四边形ACC1A1是菱形,且∠A1AC=60°,求四棱柱ABCD–A1B1C1D1的体积因为在考试所以没图求高手求
(平面与平面性质)如图,四棱柱ABCD-A1B1C1D1中底面ABCD为正方形侧棱AA1⊥底面ABCD,E是棱BC的中点.求证BD1∥平面C1DE
如图,正四棱柱ABCD—A1B1C1D1中对角线BD1=8,BD1与侧面B1BCC1所成的为30°.①求BD1和底面ABCD所成的角
正四棱柱ABCD-A1B1C1D1中,E是DD1的中点,求证:BD1‖平面ACE
如图,在正四棱柱ABCD-A1B1C1D1中,AA1=1/2AB,点E,M分别为A1B,C1C的中点,过A1,B,M三点的平面A1BMN交C1D1于点N.(1)求证:EM//平面A1B1C1D1;(2)设截面A1BN把该正四棱柱截成两个几何体的体积分别为V1,V2(V1
如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O为底面圆心,A1O⊥平面ABCD,AB=AA1=根号2.证明平面A1BD∥平面CD1B求三棱柱ABD-A1B1D1的体积
如图在直四棱柱ABCD-A1B1C1D1中,已知DC=DD1=2AD=2AB=2,AD⊥DC,AB‖DC. 求BD⊥平面B1BC1C
如图、正四棱柱ABCD-A1B1C1D1中,AA1=2AB=4,点E在CC1上,且CC1=3EC1.证明AC1⊥平面BED2.求二面角E-DB-C的余弦值
如图8,在直四棱柱ABCD-A1B1C1D1中,A1C1⊥B1D1,E,F分别是AB,BC的中点.(1)求证:EF//平面A1BC1;(2)求证:平面D1DBB1⊥平面A1BC1
如图,正四棱柱ABCD-A1B1C1D1中,AA1=2AB=4,点E在CC1上,且C1E=3EC求几何体C1DABA1的体积
如图;直四棱柱ABCD-A1B1C1D1中 AB||CD,AD⊥AB,AB=2,AD=√2,AA1=3,E为 CD上一点,DE=1,EC=3
如图所示,在直四棱柱ABCD—A1B1C1D1