已知定义域为R的函数f(x)满足f(f(x)-x^2+x)=f(x)-x^2+x 解(1)若f(2)=3,求f(1); (2)若f(0)=a,求f(a); (3)设有且仅有一个实数x0,使得f(x0)=x0,求函数f(x)的解析式

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 01:03:24

已知定义域为R的函数f(x)满足f(f(x)-x^2+x)=f(x)-x^2+x 解(1)若f(2)=3,求f(1); (2)若f(0)=a,求f(a); (3)设有且仅有一个实数x0,使得f(x0)=x0,求函数f(x)的解析式
已知定义域为R的函数f(x)满足f(f(x)-x^2+x)=f(x)-x^2+x 解(1)若f(2)=3,求f(1); (2)若f(0)=a,求f(a); (3)设有且仅有一个实数x0,使得f(x0)=x0,求函数f(x)的解析式

已知定义域为R的函数f(x)满足f(f(x)-x^2+x)=f(x)-x^2+x 解(1)若f(2)=3,求f(1); (2)若f(0)=a,求f(a); (3)设有且仅有一个实数x0,使得f(x0)=x0,求函数f(x)的解析式
(I)因为对任意x∈R,有f(f(x)-x2+x)=f(x)-x^2+x
所以f(f(2)-2^2+2)=f(2)-2^2+2
又由f(2)=3,得 f (3-2^2+2)=3-2^2+2,即 f(1)=1
若f(0)=a,则f (a-0^2+0)=a-0^2+0,即 f(a)=a
(Ⅱ)因为对任意x∈R,有f(f(x)-x^2+x)=f (x)-x^2+x
又因为有且只有一个实数x0,使得f(x0)=x0
所以对任意,有f(x)-x^2+x=x0
在上式中令x=x0,有f(x0)-x0^2+x0=x0
又因为f(x0)=x0,所以-x0^2 =0,故x0=0或x0=1
若x0=0,则f(x)-x^2+x=0,即f(x)=x^2-x
但方程x^2-x=x有两个不相同实根,与题设条件矛盾.故x0≠0
若x0=1,则有则f (x)-x^2+x=1,即f (x)=x^2-x+1.易验证函数满足题设条件.
综上,所以函数为f(x)=x^2-x+1(x∈R)

已知定义域为R+的函数f(x)满足:①x>1时,f(x) 已知函数y=f(x)的定义域为R,其导数f'(x)满足0 已知函数f(x)的定义域为R,且满足f(x+2)=-f(x),证明它是周期函数! 已知函数F(X)的定义域为R,其导函数满足0 已知函数f(x)的定义域为R,f(13)=13,且满足f(x+2)=-f(x),f(2013)= 麻烦给出过程 已知函数f(x)的定义域为R,满足 f(x1+x2)=f(x1)+f(x2) 求f(0)的值 解关于x的不等式 已知函数f(x)的定义域为R,且满足f(x)+2f(-x)=6x平方-3x+3 ,求f(x)的解析式 已知定义域为R的函数y=f(x)满足f(-x)=-f(x+4)当x>2时,f(x)单调递增,若x1 已知函数f(x)的定义域为R,且满足f(x)+2f(-x)=6x平方-3x+3 ,求f(0) 已知定义域为R的函数y=f(x)满足f(-x)=-f(x+4)当x>2时,f(x)单调递增,若x1+x2 已知函数f(x)的定义域为R对任何实数x满足f(x+5)=f(x)则f(x)是周期函数,周期T= 已知定义域为R的函数f(x)满足f(-x)=-f(x+4),当x>2时,f(x)单调递增.如果x1+x2 已知定义域为R上的减函数,则满足f(1/x的绝对值) 已知函数f(x)的定义域为R+,且满足条件f(x)=f(1/x)*lgx+1,求f(x)的表达式 已知定义域为R的函数的f(x)满足f(f(x)-x方+x)=f(x)-x方+x 1若f(2)=3,求f(1),又若f(0)=a,求f(a) 已知函数f(x)的定义域为R 且满足f(x+2)=负f(x) 求证 f(x)是周期函数 已知f(x)是定义域为R上的函数满足f(x)+f(x-1)=1证明:f(X)是偶函数. 已知定义域为R的函数f(x)满足f(f(x)-x2+x)=f(x)-x2+x (1) 若f(2)=3,求f(1);又若f(0)=a,求f(a); (2)设有且