设数列{An}的前n项和Sn=An-1(n=1,2,3…),数列{bn}满足条件b1=3,bk+1=Ak+bk(k=1,2,3) ...设数列{An}的前n项和Sn=An-1(n=1,2,3…),数列{bn}满足条件b1=3,bk+1=Ak+bk(k=1,2,3)1:求数列{An}的通项公式.2:求数列{bn}的前n

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 18:47:27

设数列{An}的前n项和Sn=An-1(n=1,2,3…),数列{bn}满足条件b1=3,bk+1=Ak+bk(k=1,2,3) ...设数列{An}的前n项和Sn=An-1(n=1,2,3…),数列{bn}满足条件b1=3,bk+1=Ak+bk(k=1,2,3)1:求数列{An}的通项公式.2:求数列{bn}的前n
设数列{An}的前n项和Sn=An-1(n=1,2,3…),数列{bn}满足条件b1=3,bk+1=Ak+bk(k=1,2,3) ...
设数列{An}的前n项和Sn=An-1(n=1,2,3…),数列{bn}满足条件b1=3,bk+1=Ak+bk(k=1,2,3)
1:求数列{An}的通项公式.
2:求数列{bn}的前n项和.

设数列{An}的前n项和Sn=An-1(n=1,2,3…),数列{bn}满足条件b1=3,bk+1=Ak+bk(k=1,2,3) ...设数列{An}的前n项和Sn=An-1(n=1,2,3…),数列{bn}满足条件b1=3,bk+1=Ak+bk(k=1,2,3)1:求数列{An}的通项公式.2:求数列{bn}的前n
因为An=S(n 1)-Sn=A(n 1)-An,所以An(n 1)=2An,其为等比数列,又因为A1=-1那么An=-2^(n-1),(说明一下,题目应该错了,Sn与An那条式子不能取n=1) 因为B(k 1)-BK=Ak,故用累加法可得,Bk-B1=A(k-1) A(k-2) …… A1=1-2^k, 所以Bk=4-2^k 所以前n项和Tn=4n-(2^1 2^2 …… 2^n)=2^n-2 4n

设数列an的前n项和为Sn,若Sn=1-2an/3,则an= 数列{an},中,a1=1/3,设Sn为数列{an}的前n项和,Sn=n(2n-1)an 求Sn 设{an}是正项数列,其前n项和Sn满足4Sn=(an-1)(an+3) ,则数列{an}的通项公式= __ 设数列{an}的前n项和为Sn,Sn=n-an,n属于自然数.求:证明:数列{an-1}是等比数列 设数列an的前n项和Sn.且Sn=2an-2,n属于正整数,(1)求数列an的通项公式,(2)设cn=n/an,求数列的前n项和Tn设数列an的前n项和Sn.且Sn=2an-2,n属于正整数,(1)求数列an的通项公式,(2)设cn=n/an,求数列的前n项和Tn 设数列An的前n项和为Sn,已知a1=1,An+1=Sn+3n+1求证数列{An+3}是等比数列 高中数学. 设Sn是数列{an}的前n项和,且Sn=2an+n (1)证明:数列{an-1}是等高中数学. 设Sn是数列{an}的前n项和,且Sn=2an+n (1)证明:数列{an-1}是等比数列 (2)数列{bn}满足bn=1/(2-an),证明:b1+b2+.+bn<1 设数列an的前n项和为Sn,且2an=Sn+2n+1 求a1 a2 a3 求证:数列{an+2}是等比数列 求数列{n*an}的前n项和Tn 设数列an的前n项和为Sn,且2an=Sn+2n+1 求a1 a2 a3 求证:数列{an+2}是等比数列 求数列{n*an}的前n项和Tn 设Sn是数列an的前n项和,已知a1=1,an=-Sn*Sn-1,(n大于等于2),则Sn= 正数列{an}的前n项和为sn,且2根号sn=an+1 1、求an 2、设bn=1/an• an正数列{an}的前n项和为sn,且2根号sn=an+11、求an2、设bn=1/an• an+1,求{bn}的前n项和 设数列An的前n项和为Sn,且a1=1,An+1=1/3Sn,求数列an的通项公式. 设数列an的前n项和为Sn,已知a1=1,3an+1=Sn,求数列an的通项公式 设数列an的前n项和为Sn,已知a1=1,3an+1=Sn,求数列an的通项公式 设正整数数列{an}的前n项和Sn满足Sn=1/4(an+1)^2,求数列{an}的通项公式 设正数数列(an)的前n项和Sn满足Sn=1/4(an+1)^2 求 数列(an)的通项公式 数列{an}的通项公式an=log2(n+1)-log2(n+2),设{an}的前n项和为Sn,则使Sn 数列{an}的通项公式an=log2(n+1)-log2(n+2),设{an}的前n项和为Sn,则使Sn