F(x)=lg(√(3x+1)/(x+1))在区间(0,1)的最大值怎么算啊

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 22:30:19

F(x)=lg(√(3x+1)/(x+1))在区间(0,1)的最大值怎么算啊
F(x)=lg(√(3x+1)/(x+1))在区间(0,1)的最大值怎么算啊

F(x)=lg(√(3x+1)/(x+1))在区间(0,1)的最大值怎么算啊
令√(3x+1)=t,则x=(t^2-1)/3,(√(3x+1)/(x+1))=3t/(t^2+2)=3/(t+2/t),令g(t)=t+2/t,可知函数g(t)在(0,√2)上递减,所以t+2/t在区间(0,1)的最小值3,则3/(t+2/t),在区间(0,1)上的最大值为1,所以F(x)=lg(√(3x+1)/(x+1))在区间(0,1)的最大值为lg1=0