∫(1/1+X^2)^0.5 dX 怎么求?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 06:32:11

∫(1/1+X^2)^0.5 dX 怎么求?
∫(1/1+X^2)^0.5 dX 怎么求?

∫(1/1+X^2)^0.5 dX 怎么求?
∫1/√(1+x²)dx,令x=tanU则dx=sec²UdU
=∫[1/√(1+tan²U)*sec²U]dU
=∫sec²U/√(sec²U) dU
=∫secUdU
=ln|secU+tanU|+C
由于设了tanU=x,根据直角三角形,对边是x,邻边是1,斜边是√(1+x²)
那么secU=√(1+x²)/1=√(1+x²),
=ln|x+√(1+x²)|+C
至于∫secUdU=ln|secU+tanU|+C看下面的推导:
∫secxdx
=∫sec²x/secxdx
=∫cosx/cos²xdx
=∫1/cos²xdsinx
=∫1/(1-sin²x)dsinx
=-∫1/(sinx+1)(sinx-1)dsinx
=-∫[1/(sinx-1)-1/(sinx+1)]/2dsinx
=-[∫1/(sinx-1)dsinx-∫1/(sinx+1)dsinx]/2
=[∫1/(sinx+1)d(sinx+1)-∫1/(sinx-1)d(sinx-1)]/2
=(ln|sinx+1|-ln|sinx-1|)/2+C
=ln√|(sinx+1)/(sinx-1)|+C
=ln√|(sinx+1)²/(sinx+1)(sinx-1)|+C
=ln√|(sinx+1)²/(sin²x-1)|+C
=ln√|-(sinx+1)²/cos²x|+C
=ln|(sinx+1)/cosx|+C
=ln|tanx+1/cosx|+C
=ln|secx+tanx|+C

题目输入似乎有误,稍加更改后为
∫1/(1+X^2)^0.5 dX
=∫(1/sect)dtant (令x=tant)
=∫(1/sect)(sect)^2dt
=∫sectdt
=ln|sect+tant|+C
=ln|(1+x^2)^0.5+x|+C