已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,则下列结论中,正确的是( )A、a>0 B、b<0 C、c<0 D、a+b+c>0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 07:10:43
已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,则下列结论中,正确的是( )A、a>0 B、b<0 C、c<0 D、a+b+c>0
已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,则下列结论中,正确的是( )
A、a>0 B、b<0 C、c<0 D、a+b+c>0
已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,则下列结论中,正确的是( )A、a>0 B、b<0 C、c<0 D、a+b+c>0
把图传上来才能做.
或者是将图形的链接说一下,也行的.
欢迎向我追问.
不用传图了:我给你点一下
a表示开口方向
以及根与系数的关系
a看开口方向
b看对称轴位置
c看图象与y轴的交点
a+b+c看x=1时的点在x轴上方还是下方。
虽然没有图,我估计这个题答案是D,好像以前见过。
:∵抛物线的开口向下,
∴a<0;
又∵抛物线的对称轴在y轴的右侧,
∴a,b异号,
∴b>0;
又∵抛物线与y轴的交点在x轴上方,
∴c>0,
又x=1,对应的函数值在x轴上方,
即x=1,y=ax2+bx+c=a+b+c>0;
所以A,B,C选项都错,D选项正确.
故选D....
全部展开
:∵抛物线的开口向下,
∴a<0;
又∵抛物线的对称轴在y轴的右侧,
∴a,b异号,
∴b>0;
又∵抛物线与y轴的交点在x轴上方,
∴c>0,
又x=1,对应的函数值在x轴上方,
即x=1,y=ax2+bx+c=a+b+c>0;
所以A,B,C选项都错,D选项正确.
故选D.
收起
D
已知抛物线y=ax2+bx+c(a
抛物线y=ax2+bx+c(a
抛物线y=ax2+bx+c(a
抛物线y=ax2+bx+c(a
抛物线y=ax2+bx+c(a
已知抛物线y=ax2+bx,当a>0,b
已知抛物线y=ax2+bx+c经过原点和点(-2,0),则2a-3b__0
已知抛物线y=ax2+bx+3,经过A(3,0),B(4,1)两点,且与y轴交于点C.已知抛物线y=ax2+bx+3(a≠0)经过A(3,0),B(4,1)两点,且与y轴交于点C.(1)求抛物线y=ax2+bx+3(a≠0)的函数关系式及点C的坐标
已知抛物线y=ax2+bx+c(a≠0)与x轴相交于不同的两点A(x1,0),B(x2,0),(x1
若抛物线y=ax2+bx+c(a≠0)的图象与抛物线y=x2-4x+3的图象关于y轴对称,则函数y=ax2+bx+c的解析式为______.
已知抛物线y=ax2+bx+c如图所示,则关于x的方程ax2+bx+c-8=0的根的情况是( )步骤
已知抛物线y=ax2+bx+c经过A(-1,0),B(3,0),C(0,3)三点,直线l是抛物线的对称轴.已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设
已知抛物线y=ax2+bx+c经过A(-1,0),B(3,0),C(0,3)三点,直线l是抛物线的对称轴.已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设
如图,抛物线y=ax2+bx+c(a
已知二次函数y=ax2+bx+c的系数满足a-b+c=0,则这条抛物线经过点?
图我就不画了,直接说条件.已知抛物线y=ax2+bx+c,a0,b>0,a-b+c
已知抛物线y=ax^2+bx+3(a不等于0)经过A(3,0)B(4,1)两点,且与Y轴交予点C已知抛物线y=ax2+bx+3(a≠0)经过A(3,0),B(4,1)两点,且与y轴交于点C. (1)求抛物线y=ax2+bx+3(a≠0)的函数关系式及点C的坐
已知抛物线y=ax2+bx+c(a大于0)经过点A(-9,-5)而且b=6a,1.求证:方程ax2+bx+c=0一定有两个不相等的实数根2.试求出抛物线y=ax2+bx+c(a大于0)经过的另一个定点(点A除外,定点坐标为常数)