已知函数f(x)的定义域为R,且对任意x属于Z,都有f(x)=f(x-1)+f(x+1).若f(-1)=2,f(1)=3,则f(2012)+f(-2012)=要详解,谢谢~~~

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 23:42:23

已知函数f(x)的定义域为R,且对任意x属于Z,都有f(x)=f(x-1)+f(x+1).若f(-1)=2,f(1)=3,则f(2012)+f(-2012)=要详解,谢谢~~~
已知函数f(x)的定义域为R,且对任意x属于Z,都有f(x)=f(x-1)+f(x+1).若f(-1)=2,f(1)=3,则f(2012)+f(-2012)=
要详解,谢谢~~~

已知函数f(x)的定义域为R,且对任意x属于Z,都有f(x)=f(x-1)+f(x+1).若f(-1)=2,f(1)=3,则f(2012)+f(-2012)=要详解,谢谢~~~
用迭代法,求证f(x)是以6 为周期的周期函数.
在 f(x)=f(x-1)+f(x+1) (1)
中用x+1 替换x,得
f(x+1)=f(x)+f(x+2) (2)
(1)+(2)得
f(x+2)=-f(x-1) (3)
在(3)中用x+1替换x,得
f(x+3)=-f(x) (4)
在(4)中用 x+3替换 x,得
f(x+6)=-f(x+3) (5)
对比 (4),(5),得
f(x+6)=f(x)
在(1)中,令 x=0,得 f(0)=f(-1)+f(1)=5
令 x=1,得 f(1)=f(0)+f(2),f(2)=-2
令 x=-1,得 f(-1)=f(-2)+f(0),f(-2)=-3
由于 2012=335×6+2
所以 f(2012)+f(-2012)=f(2)+(f(-2)=-5

f(x)=f(x-1)+f(x+1),代入x-1得f(x-1)=f(x-2)+f(x),则f(x+1)=-f(x-2),即f(x)=-f(x+3)=f(x+6)=f(x+6k)
则f(2012)+f(-2012)=f(-1+6*335+3)+f(1-6*335-3)=-f(-1)-f(1)=-5

f(0)=f(-1)+f(1)=5
f(1)=3
f(2)=f(1)-f(0)=-2
f(3)=f(2)-f(1)=-5
f(4)=f(3)-f(2)=-3
f(5)=f(4)-f(3)=2
f(6)=f(5)-f(4)=5
f(7)=f(6)-f(5)=3
所以当x为正数时,f(x)的周期为6,所以f(2012)=f(2)=-2

全部展开

f(0)=f(-1)+f(1)=5
f(1)=3
f(2)=f(1)-f(0)=-2
f(3)=f(2)-f(1)=-5
f(4)=f(3)-f(2)=-3
f(5)=f(4)-f(3)=2
f(6)=f(5)-f(4)=5
f(7)=f(6)-f(5)=3
所以当x为正数时,f(x)的周期为6,所以f(2012)=f(2)=-2
同理,当x为负数时,f(x)的周期也为6,所以f(-2012)=f(-2)=f(-1)-f(0)=-3
所以结果为-5

收起

已知函数f(x)的定义域为R且对任意x,y∈R,有fx+y)=f(x)+f(y)+2, 已知定义域为R的函数f(x)满足:f(4)=-3,且对任意x属于R总有f倒(x) 已知函数f(x)的定义域为R,若f(x)恒不为零,且对任意x、y有f(x+y)+f(x-y)=2f(x)f(y).判断f(x)的奇偶性. 已知函数f(x)的定义域为R,且不恒为0,对任意的x、y∈R,都有f(x+y)=f(x)+f(y),求证:f(x)为奇函数 已知函数f(x)的定义域为R,且对任意x,y属于R都有f(x+y)=f(x)+f(y) 若x>0时,有f(x) 已知函数f(x)是定义域为R的偶函数f(x)>0且对任意x属于R,满足f(x-3)=1/f(x-1)求f (2013) 已知函数y=f(x)的定义域为R,且对任意a,b∈R,都有f(a+b)=f(a)+f(b),且当x>0时,f(x) 已知函数y=f(x)的定义域为R,且对任意a,b∈R,都有f(a+b)=f(a)+f(b),且当x>0是,f(x) 已知函数y=f(x)的定义域为R,且对任意a,b∈R,都有f(a+b)=f(a)+f(b),且当x>0时,f(x) 已知函数f(x)的定义域为R,且对任意a,b属于R,都有f(a+b)=f(a)+f(b),且当x>0时f(x) 已知函数f(x)的定义域为R,且对任意a,b属于R,都有f(a+b)=f(a)+f(b),且当x>o时,f(x) 已知函数y=f(x)的定义域为R,且对任意a,b∈R,都有f(a+b)=f(a)+f(b),且当x>0时,f(x) 已知定义域为R的函数对任意实数X,Y满足f(x+y)+f(x-y)=2f(x)cosy且f(0)=0,f(π/2)=1.则 f(x)为周期函数 已知函数y=f(x)的定义域为R,对任意x,y属于R均有f(x+y)=f(x)+f(y),且对任意x大于0对任意x,y属于R均有f(x+y)=f(x)+f(y),且对任意x大于0,都有f(x)小于0,f(3)=-3.讨论函数f(x)的单调性急呐 已知定义域为R的函数f(x),对任意的x属于r都有f(x+1)=f(x-0.5)+2 恒成立,且f(0.5)=1,则f(2012)= 已知函数f(x)的定义域为R,且对任意x,y属于R都有f(x+y)=f(x)+f(y),判断fx的奇偶性并证明 已知函数y=f(x) 的定义域为R,当x1 ,且对任意的实数x,y属于 R,等式f(x)f(y)=f(x+y) 成立. [高中数学]已知函数f(x)的定义域为R,且对任意x属于Z,都有f(x)=f(x-1)+f(x+1)已知函数f(x)的定义域为R,且对任意x属于Z,都有f(x)=f(x-1)+f(x+1).若f(-1)=2,f(1)=3,则f(2012)+f(-2