已知函数f(x),当x,y∈R时,恒有f(x+y)=f(x)+(y),试判断f(x)在(0,+无限)上的单调性,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 21:29:06
已知函数f(x),当x,y∈R时,恒有f(x+y)=f(x)+(y),试判断f(x)在(0,+无限)上的单调性,
已知函数f(x),当x,y∈R时,恒有f(x+y)=f(x)+(y),试判断f(x)在(0,+无限)上的单调性,
已知函数f(x),当x,y∈R时,恒有f(x+y)=f(x)+(y),试判断f(x)在(0,+无限)上的单调性,
这个问题给的条件不够,按上面的条件,f(x)=x或f(x)=-x均满足条件,但单调性相反,则这个题目无法确定其单调性;可加个条件如当x>0,f(x)>0
f(x+y)=f(x)+(y)
令x1,x2∈(0,+∞),且x1>x2
则f(x1)-f(x2)=f(x1-x2)
x1-x2>0,则f(x1-x2)>0,f(x1)>f(x2)
所以f(x)在(0,+∞)上为增函数
答:f(x)在(0,+∞)上为增函数
已知函数f(x),当x,y∈R时,恒有f(x+y)=f(x)+f(y).若f(3)=4,求f(24)
已知函数f(x),当x,y∈R时,恒有f(x+y)=f(x)+f(y),求证f(x)是奇函数
已知函数f(x),当x,y∈R时,恒有f(x+y)=f(x)=f(y).(1)求证;f(x)是奇函数;
已知函数F(X),当xy∈R时,恒有F(x+y)=f(x)+f(y)证明F(x)为奇函数
已知函数f(x)对任意x,y∈R,总有f(x)+f(y)=f(x+y),且当x>0时,f(x)
已知函数f(x),当x,y在R上时,恒有:f(x*y)=x*f(y)+y*f(x).求证函数是奇函数.
已知函数f(x),当x,y属于R时,恒有f(x+y)=f(x)+f(y),求证f(x)是奇函数
已知函数f(x),当x,y属于R时,恒有f(x+y)=f(x)+f(y),求证f(x)是奇函数
已知函数f(x),当x,y∈R时,恒有f(x+y)=f(x)+f(y),当x>0时,f(x)>0,试判断f(x)在(0,+∞)上的单调性...
已知函数f(x),当x,y∈R时,恒有f(x+y)=f(x)+f(y),当x>0时,f(x)>0,试判断f(x)在(0,+∞)上的单调性.
已知函数f(x),当x,€R时,恒有f(x+y)=f(x)+(y)若f(-3)=a,试用a表示f(24)
已知函数f(x)当x,y∈R时恒有f(x+y)=f(x)+f(y)当x>0时,f(x)
已知函数f(x)对任意x,y属于R,都有f(x+y)=f(x)+f(y).当x>0时,f(x)
已知函数f(x)对任意x,y属于R,总有f(x)+f(y)=f(x+y),且当x>0时,f(x)
已知函数 f(x) ,当x,y 属于 R 时,恒有 f(x+y) = f(x) + f(y).1:求证f(x)是奇函数2:如果 x 属于R+ ,f(x)
已知函数f(x)当x,y属于R时,恒有f(x+y)=f(x)+f(y).1:求证:f(x)+f(-x)=0.2:若f(-3)=a,试用a表示f(24)
已知函数f(x),当x,y属于R时,恒有f(x+y)=f(x)+f(y),当x>0时,f(x)>0,试判断f(x)在(0,正无穷)上的单调性
已知函数f(x),当x,y属于R时,恒有f(x+y)=f(x)+f(y),当x>0时,f(x)>0,试判断f(x)在(0,正无穷)上的单调性