1/(2*4)+1/(4*6)+1/(6*8)+.+1/(2008*2010)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 11:50:59
1/(2*4)+1/(4*6)+1/(6*8)+.+1/(2008*2010)
1/(2*4)+1/(4*6)+1/(6*8)+.+1/(2008*2010)
1/(2*4)+1/(4*6)+1/(6*8)+.+1/(2008*2010)
1/(2*4)+1/(4*6)+1/(6*8)+.+1/(2008*2010)
=1/2*[1/2-1/4+1/4-1/6+1/6-1/8+……+1/2008-2010]
=1/2*[1/2-1/2010]
=251/1005
1,2,4,6,
1/2*2-1+1/4*4-1+1/6*6-1+...+1/50*50-1
|1/4-1/2|+|1/6-1/4|+|1/8-1/6|+```+|1/2008-1/2006|
1+2+4+6@$456
1+6+6+8+4+2+6+6+5+4+4+1+4+7+45
1+1/2+4+1/2+4+6+1/2+4+6+8+.+1/2+4+6+8...+20
1/2+1/2+4+1/2+4+6+.+1/2+4+6+...+100
1、2、2、4、3、6、4、( )、(
1/2+1/4+1/6+1/8+.1/n
(1/4+2/9-1/6)×36
6/7-1/2+1/4简算
1+2+3/6+1/4=
计算 1/2*4+1/4*6+.1/2006*2008
1/2*4+1/4*6+...+1/2012*2014=?
1/2*4+1/4*6+.+1/2008*2010
1/2*4+1/4*6+1/6*8+.+1/2006*2008=(1/2*4)+(1/4*6)+(1/6*8)+..........+(1/2006*2008)
[2^4+1/4)(4^4+1/4)(6^4+1/4)(8^4+1/4)(10^4+1/4)】/[1^4+1/4)(3^4+1/4)(5^4+1/4)(7^4+1/4)(9^4+1/4)]
10,1,8,1,6,2,4,6,2,().