已知P为正方形ABCD的对角线AC上一点(不与A、C重合),PE⊥BC于点E,PF⊥CD于点F.如图8-1,已知P为正方形ABCD的对角线AC上一点(不与A、C重合),PE⊥BC于点E,PF⊥CD于点F.(1) 求证:BP=DP;(2) 如图8-2,若四边形P

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 16:33:17

已知P为正方形ABCD的对角线AC上一点(不与A、C重合),PE⊥BC于点E,PF⊥CD于点F.如图8-1,已知P为正方形ABCD的对角线AC上一点(不与A、C重合),PE⊥BC于点E,PF⊥CD于点F.(1) 求证:BP=DP;(2) 如图8-2,若四边形P
已知P为正方形ABCD的对角线AC上一点(不与A、C重合),PE⊥BC于点E,PF⊥CD于点F.
如图8-1,已知P为正方形ABCD的对角线AC上一点(不与A、C重合),PE⊥BC于点E,PF⊥CD于点F.
(1) 求证:BP=DP;
(2) 如图8-2,若四边形PECF绕点C按逆时针方向旋转,在旋转过程中是否总有BP=DP?若是,请给予证明;若不是,请用反例加以说明;
(3) 试选取正方形ABCD的两个顶点,分别与四边形PECF的两个顶点连结,使得到的两条线段在四边形PECF绕点C按逆时针方向旋转的过程中长度始终相等,并证明你的结论 .
请写出具体的过程

已知P为正方形ABCD的对角线AC上一点(不与A、C重合),PE⊥BC于点E,PF⊥CD于点F.如图8-1,已知P为正方形ABCD的对角线AC上一点(不与A、C重合),PE⊥BC于点E,PF⊥CD于点F.(1) 求证:BP=DP;(2) 如图8-2,若四边形P
1 证明:在△BCP和△DCP中
∵BC=CD
∠BCP=∠DCP=45°
CP=PC(公共边)
∴△BCP≌△DCP(SAS)
∴BP=DP
2 不是 DP>BP
在图示情况下,连接BP
在△BEC和△DFC中
∵ BC=CD
∠BCE=90-∠BCF=∠DCF
CE=CF
∴△BEC≌△DFC(SAS)
∴BP=DF
△DPF中
∠DFP=360-90-∠DFC
∵∠DFC -180°
∴∠DFP>360-90-180=90°(是钝角)
∴DP>DF
∴DP>BP
3 在第2问中已经证明了BP=DF,在旋转中,该结论始终成立.

第一问 三角形bpe与dpf全等 得证 2问不是 当p在bc上时bp

已知在正方形ABCD中,对角线的长为20厘米,P是AB上任意一点,则点P到AC、BD的距离值 已知正方形ABCD的边长为2,点P为对角线AC上一点,则(向量AP+向量BD)*(向量PB+向量PD)的最大值 已知正方形ABCD的边长为2,点P为对角线AC上一点,则(向量AP+向量BD)*(向量PB+向量PD)的最大值( ) 已知正方形ABCD的边长为a,边AB上任意一点P到对角线AC,BD的距离之和为___________? 正方形ABCD边长为2,P为对角线AC上一点,(AP+BD)*(PB+PD)的最大值为 在正方形ABCD中,对角线AC=10cm,p是AB上任意一点,p到对角线AC.BD的距离之和为?cm 正方形ABCD中,对角线AC=24cm,点P为AB上一点,则点P到对角线AC,BD的距离和是多少,如果可以~ 已知正方形ABCD中,对角线AC的长为12cm,P为AB上任一点,则点P到AC、BD的距离之和为 如图,已知正方形ABCD的面积为64,△ABE是等边三角形,且点E在正方形ABCD内.若在对角线AC上存在一点P,使PD+PE的值最小,则这个最小值为( ) 如图,正方形ABCD的边长为4,三角形ABE是等边三角形,点E在正方形ABCD内,在对角线AC上存在一点P…… 已知ABCD为矩形,AC为对角线,P为对角线AC上一点,BP=4,AP=3,CP=5,求PD的长度 已知正方形ABCD的边长为a,两条对角线AC BD相交于点O,P是射线AB上任意一点,过P点分别作直线AC BD 的垂线PE 已知正方形ABCD ,o为对角线AC的中点,p为OC上的任意一点,过点p做PE垂直于BP交AD于点e,证PB=PE 正方形ABCD中,对角线BD的长为20cm,点P是AB上的任意一点,则点P到AC,BD的距离之和是------------ 已知:如图,P为正方形ABCD的对角线AC上的一点,PE⊥BC,PF⊥CD,垂足分别为点E,F.求证:BP=DP BE=DF 已知ABCD为正方形BP⊥PE,点P在对角线AC上,AP=EC=2 求ABCD的面积 已知:如图,P为正方形ABCD的对角线AC上一点,PE垂直于BC,PF垂直于CD,垂足分别为点E、F.求证:(1)BP=DP;(2)BE=DF 如图所示,正方形ABCD中,AB=1,点P是对角线AC上一点.分别以AP、PC为对角线作正方形,则这两个小正方形的周长和为?