1/2+1/(2+4)+1/(2+4+6)+...1/(2+4+6+...2n),求和
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 02:53:42
1/2+1/(2+4)+1/(2+4+6)+...1/(2+4+6+...2n),求和
1/2+1/(2+4)+1/(2+4+6)+...1/(2+4+6+...2n),求和
1/2+1/(2+4)+1/(2+4+6)+...1/(2+4+6+...2n),求和
1/2+1/(2+4)+1/(2+4+6)+...1/(2+4+6+...2n)
=1/(1×2)+1/(2×3)+1/(3×4)+.+1/[n(n+1)]
=1-1/2+1/2-1/3+1/3-1/4+.+1/n-1/(n+1)
=1-1/(n+1)
=n/(n+1)
1,2,4,6,
1、2、2、4、3、6、4、( )、(
1/2+1/2+4+1/2+4+6+.+1/2+4+6+...+100
1/2*2-1+1/4*4-1+1/6*6-1+...+1/50*50-1
1+1/2+4+1/2+4+6+1/2+4+6+8+.+1/2+4+6+8...+20
1+2+4+6@$456
|1/4-1/2|+|1/6-1/4|+|1/8-1/6|+```+|1/2008-1/2006|
求和:1+(1+2)+(1+2+4)+(1+2+4+6)+(1+2+4+.2^n-1)
1/2+1/4+1/6+1/8+.1/n
Sn=1/(2^2-1)+1/(4^2-1)+1/(6^2-1)+.+1/[(2n)^2-1]求和
求和:1/(2^2-1)+1/(4^2-1)+1/(6^2-1)+...+1/[(2n)^2-1]
(1/4+2/9-1/6)×36
6/7-1/2+1/4简算
1+2+3/6+1/4=
1/2,1/4,
1,2,2,3,4,6,( )
(6)2(1)(2)(3)(4)
1/2-(3/4-3/8),1/2+1/4-1/6 ,2/3+(1/2+1/4),1/2-(3/4-3/8),1/2+1/4-1/6 ,2/3+(1/2+1/4),