已知数列an,的前n项和为Sn,a1=1,且S(n+1)=4an+2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 00:03:03

已知数列an,的前n项和为Sn,a1=1,且S(n+1)=4an+2
已知数列an,的前n项和为Sn,a1=1,且S(n+1)=4an+2

已知数列an,的前n项和为Sn,a1=1,且S(n+1)=4an+2
如果不用特征根法,还有一个比较经典的方法你可以借鉴.
名字不妨叫做凑等比数列法.
S(n+1)=4an+2,所以Sn=4a(n-1)+2
相减得:a(n+1)=4an-4a(n-1)
下面,求出适合的数字b,c使得: (待定系数法)
a(n+1)+b*an=c[an+b*a(n-1)]
这个式子跟上个式子是等价的,所以有
c-b=4,bc=-4. 求出b=-2,c=2.
即 a(n+1)-2an=2[an-2a(n-1)],令通项bn=a(n+1)-2an,得到bn=2b(n-1)为一等比数列.
求b1. b1=a2-2a1,由初始的S(n+1)=4an+2知道S2=a1+a2=4+2=6
于是求出a2=5,再代入求出b1=5-2=3
这就求出了bn的通项公式 bn=3*2^(n-1)=3*2^(n-1)
bn=a(n+1)-2an, 2b(n-1)=2an-4a(n-1),2^(n-1)*b1=2^(n-1)*a2-2^n*a1
一共是n项,需要对其求和
左边是 2^(n-1)b1+.+2b(n-1)+bn ; 式(1)
右边是 a(n+1)-2^n*a1=a(n+1)-2^n . 式(2)
左边等于右边,对左边n项求和:设Bn等于左边的和式,即式(1)
Bn=3*2^(n-1)+3*2^(n-1)+.+3*2^(n-1)一共n个,
所以Bn=3n*2^(n-1)=a(n+1)-2^n
所以a(n+1)=(3n+2)2^(n-1)
通项an=(3n-1)2^(n-2)
以上是完整解答.

s2=a1+a2=4*a1+2=>a2=5
s3=1+5+a3=4*5+2=>a3=16
s4=1+5+16+a4=4*16+2=>a4=44
s5=1+5+16+44+a5=4*44+2=>a5=112
不知道你问的是啥

S(n+1)=4an+2
所以Sn=4a(n-1)+2
相减得a(n+1)=4an-4a(n-1)
a(n+1)-2an=2an-4a(n-1)=2[an-2a(n-1)]
所以:
{an-2a(n-1)}为等比数列!公比为2
因为S2=4a1+2=6=1+a2,所以a2=5,
所以等比数列首项为:a2-2a1=3
所以an-...

全部展开

S(n+1)=4an+2
所以Sn=4a(n-1)+2
相减得a(n+1)=4an-4a(n-1)
a(n+1)-2an=2an-4a(n-1)=2[an-2a(n-1)]
所以:
{an-2a(n-1)}为等比数列!公比为2
因为S2=4a1+2=6=1+a2,所以a2=5,
所以等比数列首项为:a2-2a1=3
所以an-2a(n-1)=3*2^(n-2)
所以an/2^n-a(n-1)/2^(n-1)=3/4
即:{an/2^n}为等差数列,公差为3/4
首项为:a1/2=1/2
an/2^n=1/2+3(n-1)/4=(3n-1)/4
an=2^(n-2)*(3n-1)
n=1 a1=1也满足an
所以:
an=2^(n-2)*(3n-1)
a(n-1)=2^(n-3)*(3n-4)
Sn=4a(n-1)+2=2^(n-1)*(3n-4)+2

收起

数列An的前n项和为Sn,已知A1=1,An+1=Sn*(n+2)/n,证明数列Sn/n是等比数列 已知数列{an}的前n项和为Sn,若a1=1/2,Sn=n^2an-n(n-1)求Sn,an 数列:已知数列{an}前 n项和为Sn,且a1=2,4Sn=ana(n+1).求数列{an}的通项公式. 【急!已知Sn为数列{an}的前n项和 a1=1 Sn=n的平方 乘以an 求数列{an}的通项公 已知数列{an}的前N项和为sn a1=1an+1=sn+3n+1,求数列{an}的通项公式 已知Sn为数列{an}的前n项和,a1=1,Sn=n²•an,求数列{an}的通项公式 设数列An的前n项和为Sn,已知a1=1,An+1=Sn+3n+1求证数列{An+3}是等比数列 已知数列an的前n项和为Sn,Sn=三分之一×【a1-1】求a1,a2 .求证数列an是等比数列 已知数列{an}的前n项和为Sn,又a1=2,nAn+1=sn+n(n+1),求数列{an}的通项公式 已知Sn为数列的前n项和,a1=2,2Sn=(n+1)an+n-1,求数列an的通项公式 已知数列 an前n项和为Sn,a1=1,Sn=2a(n+1),求Sn 已知数列{an}的前n项和为Sn,a1=1/2,且Sn=n^2An-n(n-1),求an 已知数列{an}a1=2前n项和为Sn 且满足Sn Sn-1=3an 求数列{an}的通项公式an已知数列{an}a1=2前n项和为Sn 且满足Sn +Sn-1=3an 求数列{an}的通项公式an 已知数列{an}的前n项和为Sn,且满足an+2Sn*Sn-1=0,a1=1/2.求证:{1/Sn}是等差数列 已知数列An中,其前n项和为Sn,A1=1,且An+1=2Sn,求An的通项公式和Sn 已知数列{an} 的前n项和为sn,且an=sn *s(n-1)a1=2/9 求证:{1/sn}为等差 数列{an}的前n项和为Sn,已知a1+2,Sn+1=Sn-2nSn+1Sn,求an紧急紧急!求救中!sos 设数列an的前n项和为Sn,已知a1=1,3an+1=Sn,求数列an的通项公式