若lim[a/(1-x)-b/(1-x^2)]=1,则常数a、b的值为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 12:56:08

若lim[a/(1-x)-b/(1-x^2)]=1,则常数a、b的值为
若lim[a/(1-x)-b/(1-x^2)]=1,则常数a、b的值为

若lim[a/(1-x)-b/(1-x^2)]=1,则常数a、b的值为
a=1,b=2或a=-1.b=-2.
该题应给出基本变量x的变化趋势x→1,
a/(1-x)-b/(1-x^2)=(ax+(a-b))/(1-x^2)
当x→1时,1-x^2→0,1-x^2=(1-x)*(1+x)
欲使极限存在必须ax+(a-b)=x-1,或者ax+(a-b)=1-x
由ax+(a-b)=x-1和x的任意性得a=1,a-b=-1,解得b=2
同理由ax+(a-b)=1-x得a=-1.b=-2.

这位仁兄忘记分母还有个1+x,将x=1代入,应为[ax+(a-b)]/2(1-x)=1,得a=-2.b=-4