已知抛物线y=-1/2x²+bx+4上有不同的两点E(k+3,-k²+1)和F(-k-1,-k2+1)(1)求抛物线的解析式 (2)如图,抛物线y=-1/2x²+bx+4与x轴和y轴的正半轴分别交于点A和B,M为AB的中点,∠PMQ在AB的同侧以

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 05:03:34

已知抛物线y=-1/2x²+bx+4上有不同的两点E(k+3,-k²+1)和F(-k-1,-k2+1)(1)求抛物线的解析式 (2)如图,抛物线y=-1/2x²+bx+4与x轴和y轴的正半轴分别交于点A和B,M为AB的中点,∠PMQ在AB的同侧以
已知抛物线y=-1/2x²+bx+4上有不同的两点E(k+3,-k²+1)和F(-k-1,-k2+1)(1)求抛物线的解析式 (2)如图,抛物线y=-1/2x²+bx+4与x轴和y轴的正半轴分别交于点A和B,M为AB的中点,∠PMQ在AB的同侧以M为中心旋转,且∠PMQ=45°,MP交y轴于点C,MQ交x轴于点D.设AD的长为m(m>0),BC的长为n,求n和m之间的函数关系式;
(3)当m,n为何值时,∠PMQ的边过点F?,"∠PMQ在AB的同侧以M为中心旋转"什么意思,

已知抛物线y=-1/2x²+bx+4上有不同的两点E(k+3,-k²+1)和F(-k-1,-k2+1)(1)求抛物线的解析式 (2)如图,抛物线y=-1/2x²+bx+4与x轴和y轴的正半轴分别交于点A和B,M为AB的中点,∠PMQ在AB的同侧以
1)由于E、F的纵坐标相同,因此点E、F关于对称轴对称,则-b/(2*(-1/2))=1/2(k+3-k-1)得b=2;
因此抛物线的解析式为y=-1/2x²+2x+4.
(2)∠PMQ在AB的同侧以M为中心旋转的意思为:P点和Q点在线段AB的同侧,且以M为旋转中心旋转,就像拿着一副三角板固定一点旋转;
依题可以画个图,假设P与Q都位于AB的上方且P点位于Q点的上方;
A(2+2sqrt(3),0) B(0,4) M(1+sqrt(3),2) /sqrt(x)意为根号x/
设直线MP的方程为y=k'(x-1-sqrt(3))+2 /k'为直线MP的斜率/
令x=0得y=2-(1+sqrt(3))k',那么n=2+(1+sqrt(3))k' (1)
由到角公式可得直线MQ的斜率为(k'-1)/(k'+1) /把直线l1依逆时针方向旋转到与l2重合时所转的角,叫做l1到l2的角,简称到角.tanθ=(k2-k1)/(1+k1·k2) /
则直线MQ的方程为y=(k'-1)/(k'+1)(x-1-sqrt(3))+2
令y=0得x=1+sqrt(3)-2(k'+1)/(k'-1),那么m=1+sqrt(3)+2(k'+1)/(k'-1) (2)
将(1)中的k'用n表示再代入(2)中即得m与n的关系:
mn-(3+sqrt(3))(m+n)+8+2sqrt(3)=0

第一题把两点带进去可以解出来了

第一问把E和F点带入方程式中可求得解析式
第二问如果有图的应该很简单

(1)-b/2a=(k+3+-k-1)/2,b=-1

代之求解

看吧

已知抛物线y=a(x-b-1)²+b²;(ab是不为0的常数),顶点是A,抛物线y=x²-2x+1的顶点是B判断A点是否在抛物线y=x²-2x+1上,为什么?若抛物线y=a(x-b-1)²+b²经过B,1.求a的值2.这条抛物线与x 已知抛物线y=x²-2x+a(a 已知抛物线y=x²-2x+a(a 已知抛物线y=2x²+ax-1的顶点坐标为(1,b)求a、b 1、已知抛物线y=ax²和直线y=2x-7都经过(3,b).求抛物线的函数解析式,并判断(-b,-ab)是否在该抛物线上.2、已知抛物线y=ax²经过点(-1,2).求抛物线的函数解析式,并判断(1,2)是否在该抛物线上 已知抛物线y=x²+2ax-2b+a和y=-x²+(a-3)x+b²+1都经过x轴上两个不同点MN求ab的值 已知抛物线y=-1/2x²-(n+1)x-2n(n 已知抛物线Y=A(X-H)²与抛物线Y=2X²形状相同,其对称轴与抛物线Y=(X+1)²相同,求A与H 已知抛物线y=x²-(k-1)x-3k-2与x轴交于两点A(a,0),B(b,0)且a²+b²=17,则k=多少 已知抛物线y=x²-(m²+8)x+2(m²+6) (1)求证:无论m取何值,抛物线都经过x轴上一个定点A已知抛物线y=x²-(m²+8)x+2(m²+6)(1)求证:无论m取何值,抛物线都经过x轴 抛物线y=x²-2x-1的对称轴 已知抛物线y=x²-2x+m与x轴交于点A(x1,0),B(x2,0)(x1>x2).(1)若点P(-1,2)在抛物线y=x²-2x+m上,求m的值.(2)若抛物线y=ax²-2x+m关于y轴对称,点Q1(-2,q1),Q2(-3,q2)都在抛物线y=ax²+bx+m 已知抛物线y=(x-2)²的顶点为C点,直线y=2x+4与抛物线交A,B,试求S△ABC 已知,关于x的二次函数y=x²+(2k-1)x+k²-11、y=x²+(2k-1)x+k²-1与x轴两交点的横坐标的平方和等于9,求k以及抛物线的顶点坐标.2、在1、的条件下,设这条抛物线与x轴从左到右交与A、B两点, 已知抛物线y=x²的顶点为C,直线y=x+2与抛物线交于A、B两点,试求S△ABC 已知抛物线y=ax²+bx+c经过A、B、C三点,当x≥0时图像经过A(0,2)、B(4,0)、C(5,-3).求:(1)求出抛物线的解析式,写出抛物线的顶点坐标;(2)利用抛物线y=ax²+bx+c,写出x为何值时,y>0; 二次函数的问题已知抛物线y=x²-(k+1)x+1/4k²+2 (1)省略(2)如果抛物线交X轴于A(X1,0),B(X2,0)两点,且满足‖X1‖=X2,求抛物线的函数关系式 ‖为绝对值 答案这里是y=x²+9/4 怎么可能 1·已知a+b+c=0且a²+b²+c²=1,求ab+bc+ac的值.2·已知x,y满足等式x²+y²-4x+y+17/4=0,求(x+y)²的值.3·已知x+y=5,x²+y²=13,求代数式x²y+2x²y²+xy²的值.4·若a²+b²+