已知抛物线C:y^2=-2px(p>0)上横坐标为-3的一点与其焦点的距离为4.设动直线y=k(x+2)于抛物线C相交于A,B两点,问:在x轴上是否存在于k的去值无关的定点M,使得∠AMB被x轴平分?若存在,求出点M的坐标;

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 21:26:46

已知抛物线C:y^2=-2px(p>0)上横坐标为-3的一点与其焦点的距离为4.设动直线y=k(x+2)于抛物线C相交于A,B两点,问:在x轴上是否存在于k的去值无关的定点M,使得∠AMB被x轴平分?若存在,求出点M的坐标;
已知抛物线C:y^2=-2px(p>0)上横坐标为-3的一点与其焦点的距离为4.
设动直线y=k(x+2)于抛物线C相交于A,B两点,问:在x轴上是否存在于k的去值无关的定点M,使得∠AMB被x轴平分?若存在,求出点M的坐标;若不存在,说明理由.

已知抛物线C:y^2=-2px(p>0)上横坐标为-3的一点与其焦点的距离为4.设动直线y=k(x+2)于抛物线C相交于A,B两点,问:在x轴上是否存在于k的去值无关的定点M,使得∠AMB被x轴平分?若存在,求出点M的坐标;
答:
抛物线C:y^2=-2px(p>0)开口向左,对称轴为x轴
横坐标x=-3上的点到其焦点的距离为4,则到准线x=p/2的距离也是为4
所以:p/2-(-3)=4
解得:p=2
y^2=-4x
直线y=k(x+2)恒过定点(-2,0),为抛物线的焦点F
联立可得:y^2=(k^2)(x+2)^2=-4x
整理得:(k^2)x^2+4(k^2+1)x+4k^2=0
根据韦达定理有:
x1+x2=-4(k^2+1)/k^2=-4-4/k^2
x1*x2=4
x轴是∠AMB的平分线,则直线MB和MA的斜率互为相反数
设点M为(m,0)
依据题意有:kmb=-kma
(y1-0)/(x1-m)=-(y2-0)/(x2-m)
k(x1+2)/(x1-m)=-k(x2+2)/(x2-m)
显然,k=0时,y=0与抛物线仅有一个交点,不符合题意
所以:(x1+2)/(x1-m)=-(x2+2)/(x2-m)
x1x2-mx1+2x2-2m=-x1x2-2x1+mx2+2m
2x1x2-(x1+x2+4)m+2(x1+x2)=0
8-(-4/k^2)m-8-8/k^2=0
所以:4m/k^2-8/k^2=0
所以:4m-8=0时恒成立
解得:m=2
所以:定点M为(2,0)

已知抛物线y^2=2px(p 已知抛物线C;y^2=2px(p>0),F为抛物线的焦点,点M(p/2,p)求解! 已知抛物线y^2=8px(p>0)说明p的几何意义 21.已知抛物线y^2=2px(p21.已知抛物线y^2=2px(p 已知抛物线y^2=2px(p>0)的准线方程与圆 已知抛物线C:y^2=2px(p>0)过点A(1,2)求抛物线方程,并求其准线方程 已知抛物线C:y^2=2px(p>0)过点A(1,2)求抛物线方程,并求其准线方程 已知点P(6,y)在抛物线 y^2=2px(p>0)上,F为抛物线焦点,若 PF=8,则点F到抛物线 已知抛物线C:y^2=2px(p>0),若抛物线C上存在两点关于直线L:x+y=1对称,求实数p的范围 已知抛物线C:y^2=2px(p>0),若抛物线C上存在两点关于直线L:x+y=1对称,求实数p的范围 已知抛物线C:y^2=4px(p>0)的焦点在直线l:x-my-p^2=0上已知抛物线C:y^2=4px(p>0)的焦点在直线l:x-my-p^2=0,1.求抛物线方程2设直线l与抛物线C相交于点A.B求m的取值范围,使得在抛物线上存在点M,满足MA垂 已知抛物线y^2=2px(p>0),其焦点为F,且点(2,1)到抛物线准线的距离为3.求抛物线的方程 已知抛物线y^2=2px(P大于0的焦点为F,过点F的直线角抛物线于AB两点点C在抛物线的准线上,且BC平行X轴 已知抛物线C:y^2=2px(p>0)的焦点F在直线l:2x-2y-1=0上,①求抛物线C的方程 已知抛物线C:y^2=2px(p>0)上横坐标为4的点到焦点距离为5 设直线y=kx+b与抛物线C交于A(X1,Y1),B (X2,Y2)两 已知d为抛物线y=2px^2(p>0)的焦点到准线的距离.则pd=? 过已知点A(0,P)且与抛物线y平方=2px只有一个焦点的直线有几条? 高二数学题:已知抛物线C;y^2=2px,且点P(1,2)在抛物线上.已知抛物线C;y^2=2px,且点P(1,2)在抛物线上,直线l过焦点且与该抛物线交于a,b两点,若|ab|=10,求直线l的方程要过程详解,急用!