已知sina+sinb=m,cosa+cosb=√2 (1)求实数m的范围 (2)当m取最小值时,求sin(a+b)的值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 22:54:32
已知sina+sinb=m,cosa+cosb=√2 (1)求实数m的范围 (2)当m取最小值时,求sin(a+b)的值
已知sina+sinb=m,cosa+cosb=√2
(1)求实数m的范围
(2)当m取最小值时,求sin(a+b)的值
已知sina+sinb=m,cosa+cosb=√2 (1)求实数m的范围 (2)当m取最小值时,求sin(a+b)的值
1) m^2+2
=(sina+sinb)^2+(cosa+cosb)^2
=2+2(sina*sinb+cosa*cosb)
=2+2cos(a-b),
可知-1<=cos(a-b)<=1,
故0<=2+2cos(a-b)<=4,
即0<=m^2+2<=4,
可得 0<=m^2<=2,
可得-√2<=m<=√2,
2) m=-√2时,
cos(a-b)=(m^2+2-2)/2=1,
a-b=2k*pi,k为整数,pi为圆周率,
则sina=sinb,可得
sina=sinb=-√2/2,cosa=cosb=√2/2,
则sin(a+b)=sina*cosb+sinb*cosa=-1
(1)
sina+sinb=m,cosa+cosb=√2
(sina+sinb)^2+(cosa+cosb)^2=m^2+2
2+2cos(a-b)= m^2+2
-1<=cos(a-b)= m^2/2<=1
所以-√2<= m<=√2
(2)
当m取最小值时,即cos(a-b)= 1
a-b=PI/2
sina+sinb...
全部展开
(1)
sina+sinb=m,cosa+cosb=√2
(sina+sinb)^2+(cosa+cosb)^2=m^2+2
2+2cos(a-b)= m^2+2
-1<=cos(a-b)= m^2/2<=1
所以-√2<= m<=√2
(2)
当m取最小值时,即cos(a-b)= 1
a-b=PI/2
sina+sinb=sin(b+PI/2)+sinb=cosb+sinb=-√2
平方得1+2sin2b=2
sin2b=1/2
sin(a+b)=sin(2b+PI/2)=cos2b=根号3/2
收起