已知非零向量a,b满足|a|=2|b|,若函数f(x)=(1/3)x^3 +(1/2)|a|x^2+a*bx在R上有极值已知非零向量a,b满足|a|=2|b|,若函数f(x)=(1/3)x^3 +(1/2)|a|x^2+a*bx在R上有极值,设向量a,b的夹角为A,则cosA的取值范围为为什么

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 10:52:40

已知非零向量a,b满足|a|=2|b|,若函数f(x)=(1/3)x^3 +(1/2)|a|x^2+a*bx在R上有极值已知非零向量a,b满足|a|=2|b|,若函数f(x)=(1/3)x^3 +(1/2)|a|x^2+a*bx在R上有极值,设向量a,b的夹角为A,则cosA的取值范围为为什么
已知非零向量a,b满足|a|=2|b|,若函数f(x)=(1/3)x^3 +(1/2)|a|x^2+a*bx在R上有极值
已知非零向量a,b满足|a|=2|b|,若函数f(x)=(1/3)x^3 +(1/2)|a|x^2+a*bx在R上有极值,设向量a,b的夹角为A,则cosA的取值范围为
为什么答案上是小于二分之一 而不是小于等于啊?

已知非零向量a,b满足|a|=2|b|,若函数f(x)=(1/3)x^3 +(1/2)|a|x^2+a*bx在R上有极值已知非零向量a,b满足|a|=2|b|,若函数f(x)=(1/3)x^3 +(1/2)|a|x^2+a*bx在R上有极值,设向量a,b的夹角为A,则cosA的取值范围为为什么
对连续函数,极值点一定是倒数为零的点,但倒数为零的点不一定就是极值点(如y=x^3),还应满足在零点两侧异号.到此处想必阁下已经知晓了吧.
一元二次方程有一根穿过X轴,则必有两不等实数根,故δ>0

aa

已知非零向量a,向量b满足:向量a+向量b的绝对值=向量a-向量b的绝对值,则向量a,向量b的关系 已知非零向量a,b满足:a=2b,且b⊥(a+b),则向量a与向量b的夹角θ=______. 已知非零向量a与b满足(a+b)(2a-b)=0,则a向量的模/b向量的模的最小值为 已知非零向量a、b满足|a|=2|b|,且b⊥(a+b),则向量a与b的夹角=? 已知非零向量a,b满足a.b=1/2||a||b|,|a|=2|b|已知非零向量已知非零向量a,b满足a●b=1/2|a||b|,|a|=2|b|,且c=b-a,则a,c夹角为 ●为点乘号,字母上面都有箭头的 已知非零向量a与b满足|a|=|b|=|a-2b|求向量a与b的夹角. 已知非零向量a,b满足丨a+b丨=丨a-b丨 求证a⊥b 已知非零向量a,b满足(向量a-向量b)⊥向量b,且(向量a+2向量b)⊥(向量a-2向量b)求向量a与向量b的夹角 已知非零向量a,b满足|a|=1,且(a-b)×(a+b)=1/2 a-b与a+b 的夹角余弦值 已知非零向量a,b满足|a|=根号2|b|,且a+b与a-2b垂直.求证:a垂直b 已知非零向量a,b满足|a|=根号2|b|,且a+b与a-2b垂直.求证:a垂直b 已知非零向量向量a与向量b,满足向量a+向量b=-向量c,向量a-向量b=3向量c,试判断向量a与向量b是否平行? 已知非零向量a、b 已知非零向量a、b满足关系式:a+b的模=a-b的模,那么向量a、b满足条件是? 已知非零向量a,b满足A已知非零向量a,b满足a+b的绝对值=a-b的绝对值,求证a垂直b用分析法解答 已知非零向量a、向量b满足关系式|向量a|=|向量b|=|向量a-向量b|,则向量a与向量a+向量b的夹角是 已知两个非零向量a和b满足a+b=(2,-8),a-b=(-6,-4),求a与b的夹角的余弦值 若两个非零向量a,b满足|a+b|=|a-b|=2|a|,则向量a+b与向量b的夹角是?