证明sinA+sinC=2sin(A+C)/2 * cos(A-C)/2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 00:33:25

证明sinA+sinC=2sin(A+C)/2 * cos(A-C)/2
证明sinA+sinC=2sin(A+C)/2 * cos(A-C)/2

证明sinA+sinC=2sin(A+C)/2 * cos(A-C)/2
A=(A+C)/2+(A-C)/2
C=(A+C)/2-(A-C)/2
左边=[sin(A+C)/2cos(A-C)/2+cos(A+C)/2sin(A-C)/2]+[sin(A+C)/2cos(A-C)/2-cos(A+C)/2sin(A-C)/2]
=2sin(A+C)/2cos(A-C)/2