若关于x的一元二次方程mx²+mx+4m+12=0的解至少有一个小于0,求m的取值范围.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 15:55:51

若关于x的一元二次方程mx²+mx+4m+12=0的解至少有一个小于0,求m的取值范围.
若关于x的一元二次方程mx²+mx+4m+12=0的解至少有一个小于0,求m的取值范围.

若关于x的一元二次方程mx²+mx+4m+12=0的解至少有一个小于0,求m的取值范围.

mx²+mx+4m+12=0
x={-m±√[m²-4m(4m+12)]}/2m
= [-m±√(-15m²-48m)]/2m
△=-15m²-48m
若要有解,必须m<0
令[-m±√(-15m²-48m)]/2m<0
∴ -m±√(-15m²-48m)>0
±√(-15m²-48m)>m
∵+√(-15m²-48m)>0>m
∴必须 -√(-15m²-48m)>m
√(-15m²-48m)<-m
-15m²-48m<(-m)²
16m²+48m>0
∵m≠0,
∴两边同除以m,得
16m+48>0
m >-3
综上所述,当-3<m<0时,mx²+mx+4m+12=0的解至少有一个小于0

m大于0小于7,x小于0大于-6