已知抛物线x2=4y的焦点为f,a,b是抛物线上的两个动点,且af向量=λfb向量(λ>0).过a,b两点分别作抛物线的切线,设切点为m.1,证明fm向量乘ab向量为定值2设三角形abm的面积为s,写出s=f(λ)的表达式

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 21:28:22

已知抛物线x2=4y的焦点为f,a,b是抛物线上的两个动点,且af向量=λfb向量(λ>0).过a,b两点分别作抛物线的切线,设切点为m.1,证明fm向量乘ab向量为定值2设三角形abm的面积为s,写出s=f(λ)的表达式
已知抛物线x2=4y的焦点为f,a,b是抛物线上的两个动点,且af向量=λfb向量(λ>0).过a,b两点分别作抛物线的切线,设切点为m.
1,证明fm向量乘ab向量为定值
2设三角形abm的面积为s,写出s=f(λ)的表达式,并求s的最小值

已知抛物线x2=4y的焦点为f,a,b是抛物线上的两个动点,且af向量=λfb向量(λ>0).过a,b两点分别作抛物线的切线,设切点为m.1,证明fm向量乘ab向量为定值2设三角形abm的面积为s,写出s=f(λ)的表达式
如下图

已知AB是抛物线y^2=2px(p>0)的焦点弦,F为抛物线焦点,点A(x1,y1),B(x2,y2).求三角形AOB的面积已知AB是抛物线y^2=2px(p>0)的焦点弦,F为抛物线焦点,点A(x1,y1),B(x2,y2).求三角形AOB的面积 数学题——抛物线已知AB是抛物线y^2=2px(p>0)的焦点弦,F为抛物线焦点,点A(x1,y1),B(x2,y2).求证:(1)y1*y2=-p^2,x1*x2=(p^2)/4(2)以AB为直径的圆必与抛物线的准线相切. 已知A(x1,y1),B(x2,y2)是抛物线Y^2=2px上两点,F为抛物线的焦点,若AF+BF=8 ,且线段AB的中垂线过点Q(6,0)求抛物线方程 抛物线x2=4y的焦点为F,A是抛物线上一点,已知|AF|=4+2,则AF所在直线方程是……? 数学题求解:已知抛物线y=x2上两点A、B,且直线AB过抛物线y=x2的焦点F,过A、B分别作抛物线已知抛物线y=x2上两点A、B,且直线AB过抛物线y=x2的焦点F,过A、B分别作抛物线的切线相交于P点.(1)求P 已知AB是抛物线Y方=4X的焦点弦,其坐标A(X1,X2)B(X2,Y2)满足X1+X2=3,则AB= 抛物线y^2=4x的焦点为F.A(x1,y1),B(x2,y2)(x1>x2,y1>0,y2 抛物线y^2=4x的焦点为F.A(x1,y1),B(x2,y2)(x1>x2,y1>0,y2 抛物线y^2=4x的焦点为F.A(x1,y1),B(x2,y2)(x1>x2,y1>0,y2 已知AB是抛物线y^2=2px(p>0)的焦点弦,为抛物线焦点,点A(X1,Y1),B(X2,Y2).求证:以AB为直径的圆必与抛物线的准线相切. 已知抛物线C:x^2=4y的焦点为F,直线l过点F交抛物线C于A、B两点已知抛物线C:x^2=4y的焦点为F,直线l过点F交抛物线C于A、B两点(1)设A(x1,y1),B(x2,y2),求1/y1+1/y2的取值范围(2)是否存在定点Q, A,B是过抛物线x2=4y的焦点的动弦 已知抛物线C:x2=4y的焦点为F,过点F作直线l交抛物线C于A、B两点;椭圆E的中心在原点,焦点在x轴上,点F是它的一个顶点,且其离心率e= √3/2(1)求椭圆E的方程(2)经过点A B两边分别做抛物线C 已知抛物线y^2=4x,过焦点f作弦ab,设a(x1,y1)b(x2,y2),则X1X2/Y1Y2的值等于 已知抛物线X2=4Y,A,B为过焦点F的动直线与抛物线上的两交点,过A,B两点分别作抛物线的切线,设其焦点为M1,求证AM垂直BM2,求证点M在定直线上3,是否存在定点Q,使得无论AB怎样运动都存在∠AQF=∠BQF, 已知A(x1,y1),B(x2,y2)是抛物线y平方=2px(p>0)上两点,抛物线焦点为F,若x1=5,求AF 若AF+BF=10,求AB中点到y轴距离 已知已知抛物线x2=4y的焦点为F,准线与y轴的交点为M,N为抛物线上,且满足|NF|=入|MN|,则入的取值范围是 已知抛物线y^=4x焦点F恰好是双曲线x^/a^-y^/b^=1的右焦点,且双曲线过点(3a^/2,b)则该双曲线的渐近线方程为