设集合A={x|x^2+2x-3},集合B={x|x^2-2a-1≤0,a>0},若A∩B中恰含一个整数,则实数a的取值范围是

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 02:15:34

设集合A={x|x^2+2x-3},集合B={x|x^2-2a-1≤0,a>0},若A∩B中恰含一个整数,则实数a的取值范围是
设集合A={x|x^2+2x-3},集合B={x|x^2-2a-1≤0,a>0},若A∩B中恰含一个整数,则实数a的取值范围是

设集合A={x|x^2+2x-3},集合B={x|x^2-2a-1≤0,a>0},若A∩B中恰含一个整数,则实数a的取值范围是

由x^2+2x-3>0,得:(x-1)(x+3)>0,∴x<-3,或x>1.

∴A={x|x<-3,或x>1}.


由x^2-2ax-1≦0,得:x^2-2ax+a^2≦1+a^2,∴(x-a)^2≦1+a^2,

∴-√(1+a^2)≦x-a<√(1+a^2),∴a-√(1+a^2)≦x≦a+√(1+a^2).

∴B={x|a-√(1+a^2)≦x≦a+√(1+a^2)}.


∵A∩B中恰含一个整数,∴需要满足:

-5<a-√(1+a^2)≦-4,且2≦a+√(1+a^2)<3.


当-5<a-√(1+a^2)≦-4时,

由a-√(1+a^2)>-5,得:a+5>√(1+a^2),∴a^2+10a+25>1+a^2,∴a>-12/5.

由a-√(1+a^2)≦-4,得:a+4≦√(1+a^2),∴a^2+8a+16≦1+a^2,∴a≦-17/8.

而a>0,∴此时需要:a>0.······①


当2≦a+√(1+a^2)<3时,

由a+√(1+a^2)≧2,得:√(1+a^2)≧2-a,∴1+a^2≧4-4a+a^2,∴a≧3/4.

由a+√(1+a^2)<3,得:√(1+a^2)<3-a,∴1+a^2<9-6a+a^2,∴a<4/3.

∴此时a的取值范围是[3/4,4/3).······②


综合①、②,得:满足条件的a的取值范围是[3/4,4/3).