1.定义在R上的函数f(x)及其导函数f′(x)的图像都是连续不断的曲线,且对于实数a,b(a0,f′(b)f(b); (3)存在x.属于[a,b],f(x.) >=f(a); (4)存在x.属于[a,b],f(a)-f(b)>f′(x.)(a-b) 其中结论正确的个数是( ) A.1 B.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 09:41:33
1.定义在R上的函数f(x)及其导函数f′(x)的图像都是连续不断的曲线,且对于实数a,b(a0,f′(b)f(b); (3)存在x.属于[a,b],f(x.) >=f(a); (4)存在x.属于[a,b],f(a)-f(b)>f′(x.)(a-b) 其中结论正确的个数是( ) A.1 B.
1.定义在R上的函数f(x)及其导函数f′(x)的图像都是连续不断的曲线,且对于实数a,b(a0,f′(b)f(b);
(3)存在x.属于[a,b],f(x.) >=f(a); (4)存在x.属于[a,b],f(a)-f(b)>f′(x.)(a-b)
其中结论正确的个数是( ) A.1 B.2 C.3 D.4
1.定义在R上的函数f(x)及其导函数f′(x)的图像都是连续不断的曲线,且对于实数a,b(a0,f′(b)f(b); (3)存在x.属于[a,b],f(x.) >=f(a); (4)存在x.属于[a,b],f(a)-f(b)>f′(x.)(a-b) 其中结论正确的个数是( ) A.1 B.
定义在R上的函数f(x)及其导函数f′(x)的图象都是连续不断的曲线,且对于实数a,b(a<b),有f'(a)>0,f′(b)<0,说明在区间(a,b)内存在x0,使f′(x0)=0,
所以函数f(x)在区间(a,b)内有极大值点,同时说明函数在区间[a,b]内至少有一个增区间和一个减区间.
由上面的分析可知,函数f(x)在区间[a,b]上不一定有零点,故①不正确;
因为函数在区间(a,b)内有极大值点,与实数b在同一个减区间内的极大值点的横坐标就是存在的一个x0,所以②正确;
函数f(x)在区间[a,b]的两个端点处的函数值无法判断大小,若f(b)>f(a),取x0=a,则③不正确;
当f(a)>f(b),且x0是极大值点的横坐标时结论④正确.
故选B.
B
(2) 和(4)正确。
证明都请参考中值定理。
应该是C (2)(3)(4)正确
(3)的证明由导数是斜率的极限证明。
B
234都对,看图,1未必存在,2存在,在a上面的某一点,3存在,也是a上面的某一点, 4存在,[f(a)-f(b)]/(a-b)表示直线ab的斜率,那么必有x0使得[f(a)-f(b)]/(a-b)<f'(x0),(注意a-b<0,所以不等式要变<)
收起