如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,△ADC和△ABE是等边三角形,DE交AB于点F,求证:F是DE中点.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 16:49:51
如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,△ADC和△ABE是等边三角形,DE交AB于点F,求证:F是DE中点.
如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,△ADC和△ABE是等边三角形,DE交AB于点F,求证:F是DE中点.
如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,△ADC和△ABE是等边三角形,DE交AB于点F,求证:F是DE中点.
过E作EM⊥AB于M
∵RT⊿ABC中,AB=2BC,AC=√3BC
∴AD=AC=√3BC,
等边三角形ABE中,AB=BE,EM=√[(BE²-(AB/2)²]=√[(2BC)²-BC²]=√3BC
∵∠DAF=30°+60°=90°
在⊿DAF,⊿EMF中
∵∠DAF=∠EMF=90°,∠AFD=∠MFE,AD=EM=√3BC
∴⊿DAF≌⊿EMF
∴EF=DF
∴F是DE中点
证明:
过D作BC的平行线,与AB相交于点G,连接EG,DG与AC相交于H,
∵∠CAE=∠BAC+∠BAE=30°+60°=90°,∠ACB=90°,
∴AE‖BC‖DG,
在正△ACD中,易知DH也是中线,即AH=CH,
根据平行线等分线段定理,得
G也是AB的中点,
即AG=(1/2)AB=(1/2)AE
又∵∠DAG=90°,...
全部展开
证明:
过D作BC的平行线,与AB相交于点G,连接EG,DG与AC相交于H,
∵∠CAE=∠BAC+∠BAE=30°+60°=90°,∠ACB=90°,
∴AE‖BC‖DG,
在正△ACD中,易知DH也是中线,即AH=CH,
根据平行线等分线段定理,得
G也是AB的中点,
即AG=(1/2)AB=(1/2)AE
又∵∠DAG=90°,∠ADG=30°,
∴DG=2AG=AE
结合上边的AE‖DG,得
四边形ADGE是平行四边形,
对角线AG和DE相交于点F,
∴F是DE的中点
收起