如图,已知:Rt三角形ABC中,角C=90度,AC=BC=2,将一块三角尺的直角顶点与斜边AB的中点M重合,(续)当三角尺绕着点M旋转时,两直角边始终保持分别与BC、AC交与D,E两点(D,E不与B、A重合)1)试说明:MD

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 01:22:46

如图,已知:Rt三角形ABC中,角C=90度,AC=BC=2,将一块三角尺的直角顶点与斜边AB的中点M重合,(续)当三角尺绕着点M旋转时,两直角边始终保持分别与BC、AC交与D,E两点(D,E不与B、A重合)1)试说明:MD
如图,已知:Rt三角形ABC中,角C=90度,AC=BC=2,将一块三角尺的直角顶点与斜边AB的中点M重合,
(续)当三角尺绕着点M旋转时,两直角边始终保持分别与BC、AC交与D,E两点(D,E不与B、A重合)
1)试说明:MD=ME 2)求四边形MDCE的面积

如图,已知:Rt三角形ABC中,角C=90度,AC=BC=2,将一块三角尺的直角顶点与斜边AB的中点M重合,(续)当三角尺绕着点M旋转时,两直角边始终保持分别与BC、AC交与D,E两点(D,E不与B、A重合)1)试说明:MD
1)证明:连接MC.
∵∠ACB=90°;AC=BC;M为AB的中点.
∴CM=BM; ∠ECM=∠B=45°;CM垂直于BA.
∵∠DME=∠BMC=90°.
∴∠CME=∠BMD.
所以,⊿CME≌ΔBMD(ASA),得ME=MD.
⊿CME≌ΔBMD,则S,⊿CME=SΔBMD.
所以,S四边形MDCE=S⊿CMD+SΔBMD=S⊿BMC=(1/2)SΔABC=(1/2)*AC*BC/2=1.

(1)证明:在Rt△ABC中,M是AB的中点,且AC=BC,
∴CM=1 2 AB=BM,
∠MCA=∠B=45°,CM⊥AB,
而∠BMD=90°-∠DMC,∠EMC=90°-∠DMC.
∴∠BMD=∠EMC.
△BDM≌△CEM(ASA).
∴MD=ME.
(2)∵△BDM≌△CEM,
∴S四边形DMEC=S△DMC+S△CME=...

全部展开

(1)证明:在Rt△ABC中,M是AB的中点,且AC=BC,
∴CM=1 2 AB=BM,
∠MCA=∠B=45°,CM⊥AB,
而∠BMD=90°-∠DMC,∠EMC=90°-∠DMC.
∴∠BMD=∠EMC.
△BDM≌△CEM(ASA).
∴MD=ME.
(2)∵△BDM≌△CEM,
∴S四边形DMEC=S△DMC+S△CME=S△DMC+S△BMD=S△BCM=1 2 S△ACB=1
∴四边形MDCE的面积为1;

收起

http://www.baidu.com/

如图,1已知rt三角形abc中ab=ac角abc= 如图,在rt三角形ABC中,角c=90º 已知如图在RT三角形ABC中 已知,如图,在RT三角形ABC中, 如图 在rt三角形abc中,角c等于45° 如图,在rt三角形abc中,角c等于45°,角cab的平 已知:如图,在Rt三角形ABC中,∠ACB=Rt∠,AC=4,BC=3,求证:四边形EGFH是平行四边形图是对的。抱歉抱歉抱歉,题目应该是:已知:如图,在Rt三角形ABC中,∠ACB=Rt∠,AC=4,BC=3,将三角形ABC平移到三角形A'B'C', 已知,如图,在Rt三角形ABC中,角BAC=90,D是BC上一点,角BAD=2角C,求证AD=AB 已知:如图,在Rt三角形ABC中,角C=90度,角BAC=30度,求证:BC=1/2AB 已知如图在Rt三角形ABC中角C=90° AD平分角BAC并且AD=BD求证AC=2分之1 AB 如图,已知在Rt三角形ABC中,角C=90°,AC=BC,BD为AC边上的中线.求sin角ABD 如图,已知在Rt三角形ABC中,角C=90度,AC=BC,BD为Ac边上中线,求sin角ABD的值 如图,在三角形ABC中,角ABC的平分线交AC于点D,已知角ABC=角C=角BDC,求角A和角C的度数rt 如图,在三角形ABC中,角ABC的平分线交AC于点D,已知角ABC=角C=角BDC,求角A和角C的度数RT 如图 在rt三角形abc中 角c等于90度,沿过b点的一条直线be折叠这个三角形已知:如图,在Rt△ABC中,∠C=90°,沿过B点的一条直线BE折叠这个三角形,使C点与AB边上的一点D重合。当∠A为多少时, 如图,Rt三角形ABC中,角C=90度,AB,BC,CA的长分别为c,a,b,求三角形ABC的内切圆半径r 如图,已知在RT三角形ABC中,叫ABC等于90°,角C等于30°,AC等于12cm 已知如图,在rt三角形abc中,角c=90度,角a=30度,bd平分角abc交ac于d,bc=根号下3,求三角形abd的面积 如图,RT三角形ABC中,