已知:sin^2A/sin^2B+cos^2Acos^2C=1,求证:tan^2Acot^2B=sin^2C

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 20:00:21

已知:sin^2A/sin^2B+cos^2Acos^2C=1,求证:tan^2Acot^2B=sin^2C
已知:sin^2A/sin^2B+cos^2Acos^2C=1,求证:tan^2Acot^2B=sin^2C

已知:sin^2A/sin^2B+cos^2Acos^2C=1,求证:tan^2Acot^2B=sin^2C
因为cos^2C=(1-sin^2A/sin^2B)/cos^2A
所以sin^2C=1-(1-sin^2A/sin^2B)/cos^2A
=1+sin^2A/(sin^2B*cos^2A)-1/cos^2A
=(sin^2B*cos^2A+sin^2A-sin^2B)/(sin^2B*cos^2A)
=[(1-cos^2B)*(1-sin^2A)+sin^2A-1+cos^2B]/(sin^2B*cos^2A)
=(sin^2A*cos^2B)/(sin^2B*cos^2A)
=tan^2Acot^2B
所以等式成立