证明f(x)=x+a^2/x[x∈R*]在区间(0,a](a>0)上是单调递减函数证明!
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/02 18:38:05
证明f(x)=x+a^2/x[x∈R*]在区间(0,a](a>0)上是单调递减函数证明!
证明f(x)=x+a^2/x[x∈R*]在区间(0,a](a>0)上是单调递减函数
证明!
证明f(x)=x+a^2/x[x∈R*]在区间(0,a](a>0)上是单调递减函数证明!
x>y
f(x)-f(y)=x+a^2/x-y-a^2/y
=(x-y) + a^2(y-x)/(xy)
=(x-y)(xy-a^2)/(xy)
x-y>0
xy-a^2<0
xy>0
=> f(x)-f(y)<0