设n阶方阵A满足A^3+2A-3E=0,证明矩阵A可逆,并写出A的逆矩阵的表达式.帮下忙啊,呵呵
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 17:51:56
设n阶方阵A满足A^3+2A-3E=0,证明矩阵A可逆,并写出A的逆矩阵的表达式.帮下忙啊,呵呵
设n阶方阵A满足A^3+2A-3E=0,证明矩阵A可逆,并写出A的逆矩阵的表达式.
帮下忙啊,呵呵
设n阶方阵A满足A^3+2A-3E=0,证明矩阵A可逆,并写出A的逆矩阵的表达式.帮下忙啊,呵呵
因A^3+2A-3E=0
变形A^3+2A=3E
即A[1/3(A^2+2E)]=E
也就是存在B=1/3 (A^2+2E)使得AB=BA=E
按定义知A可逆
且逆矩阵A^(-1)=1/3(A^2+2E)
设n阶方阵A满足:A^2+2A-3E=0,证明:R(A+3E)+R(A-E)=n
设n阶方阵A满足:A^2+2A-3E=0,证明:R(A+3E)+R(A-E)=n
设n阶方阵A满足A2-A-7E=0,证明A和A-3E可逆
设n阶实方阵A满足A^2-4A+3E=0,证明 B=(2E-A)^T(2E-A)是正定矩阵
设n阶方阵A满足A*A-A-2E=0,证明A和E-A可逆
设4阶方阵满足|3E+A|=0 ,AAT=2E,|A|
设4阶方阵满足|3E+A|=0 ,AAT=2E,|A|
设n阶方阵A满足(A+E)3=0,证明矩阵A可逆,并写出A逆矩
线性代数 设n阶方阵A满足A^2=E,|A+E |≠0,证明A=E
设n阶方阵A满足A^2-3A+3E=0证明A-2E可逆,并求其逆矩阵?
设n阶方阵A满足A^2+2A-3E=0证明A+4E的特征值都不是零.
线性代数特征值设n阶方阵A满足A^2-3A+2E=0(E为单位矩阵),求A得特征值
证明题 设N阶方阵A满足A²-2A-4E=0 证明A-3E 可逆
设n阶方阵A满足A^2+A+2E=0,则(A+E)^-1=?
设n阶方阵A满足A^2-A-2E=0怎么证明A-E可逆?
设n阶方阵A满足A的平方-5A+7E=0,证明3E-A可逆,并求(3E-A)的逆矩阵
设n阶方阵A满足A^2=E,证明r(A-E)=n-r(A+E)
设N阶方阵满足A^2-2A-4E=0,求证2A-E可逆