已知正方形ABCD (1)如图1,点E,F分别在边AB和AD上,且AE=AF.此时,线段BE,DF的数量关系和位置关系分别是什么?请直接写出结论(2)如图2,等腰直角三角形FAE绕直角顶点A顺时针旋转∠α,当0°

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 06:34:30

已知正方形ABCD (1)如图1,点E,F分别在边AB和AD上,且AE=AF.此时,线段BE,DF的数量关系和位置关系分别是什么?请直接写出结论(2)如图2,等腰直角三角形FAE绕直角顶点A顺时针旋转∠α,当0°
已知正方形ABCD (1)如图1,点E,F分别在边AB和AD上,且AE=AF.此时,线段BE,DF的数量关系和位置关系分别
是什么?请直接写出结论
(2)如图2,等腰直角三角形FAE绕直角顶点A顺时针旋转∠α,当0°

已知正方形ABCD (1)如图1,点E,F分别在边AB和AD上,且AE=AF.此时,线段BE,DF的数量关系和位置关系分别是什么?请直接写出结论(2)如图2,等腰直角三角形FAE绕直角顶点A顺时针旋转∠α,当0°
(1)BE=DF
(2)成立,证明;∠DAF+∠BAF=90°,∠BAF+∠BAE=90°,所以∠DAF=∠BAE
又AD=AB,AF=AE,所以△DAF≌△BAE(SAS),所以BE=DF
(3)AD=(√2+1)AE (简单说明;AD=AB=AF+BF=AE+EF=(√2+1)AE,因为只有BF=AE才可以DF垂直平分BE,为什么自己想一想就明白)
(4)菱形 (方法是证明△DAF≌△BAE,得出BE=DF,再根据中位线得出四边形对边平行且等于BE或DF的一半,从而得出四边相等)

我也在做这道题。第四个问,好多答案给的是菱形,其实是正方形的。因为由第一个问中得出的DF⊥BE,可以知道这个四边形的对角线垂直。再加上四边等,就是菱形了。。

如图已知正方形ABCD的边长是1,E是CD的中点,P为正方形边上的一个动点已知正方形ABCD的边长为1,E为CD边的中点,P为ABCD边上的一动点.动点P从A点出发,沿A---B---C----E运动到达点E,若设点P经过的路程 如图已知E、F分别是正方形ABCD的边BC、AD上的点,且BE=DF.(1)求证:四边形AECF是平行四边形; 如图,已知点E为正方形ABCD对角线ac上一动点,连接BE 如图,四边形ABCD是正方形,点E是AB边上的点,BE=1,将△BCE绕点C顺时针旋转90°得到△DCF.已知EF=2√5.求正方形ABCD的边长. 如图:已知四棱锥P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中点,求证(1)PC 如图,已知正方形ABCD,E为对角AC 上一动点, 求解初二数学四边形证明题第一题:如图,在正方形ABCD中,对角线AC与BD交于点O,AE平分∠BAC交BC于E,交于BO于F.求证:EC=2FO第二题:(1)如图①,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点 、如图,已知边长为a的正方形ABCD,点E在AB上,点F在BC的延长线上,EF与AC交于点O,且AE=CF.(1)若a=4 已知:如图,在正方形ABCD中,E、F分别是BC、DC边上的点,且AE垂直于EF于点E(1)延长EF交正方形ABCD的外角平分线CP于点P,试判断AE与EP的大小关系,并说明理由(2)在AB边上是否存在一点M,使得四边 已知:如图,在正方形ABCD中,E、F分别是BC、DC边上的点,且AE⊥EF于点E.(1)延长EF交正方形ABCD的外角平分线CP于点P,试判断AE与EP的大小关系,并说明理由;(2)在AB边上是否存在一点M,使得四边 如图,已知正方形ABCD的边长为1,连接AC,BD,CE平分∠ACD交BD于点E,则DE长为多少? 求讲解:如图,已知正方形ABCD的边长为1,连接AC.BD;CE平分角ACD交BD于点E,则DE等于 如图,已知正方形ABCD的边长为1,连接AC、BD,CE平分∠ACD交BD于点E,则DE= ______. 如图,已知正方形ABCD的边长是1,E是CD边上的中点,P为BC边上的一动点 如图,已知正方形ABCD的边长为1,E为CD的中点,动点P从A出发,沿点B向点C运动,若BP的长度为X如图,已知正方形ABCD的边长为1,E为CD的中点,P为正方形ABCD边上动点,动点P从A出发,沿点B向点C运动,若BP的长 如图,已知正方形ABCD的边长为10cm,点E在AB边如图,已知正方形ABCD中,边长为10厘米,点E在AB边上,BE=6厘米.(1)如果点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运 已知,如图O是正方形ABCD的中心,1.已知:如图,O正方形ABCD的中心,BE平分∠DBC,交DC于点E,延长BC到点F ,使CF=CE,连结DF,交BE的延长线于点G,连结OG.(1) 求证:△BCE≌△DCF;(2) OG与BF有什么数量 已知如图,在正方形ABCD中,E是BC的中点,点F在CD上,角FAE=角BAE求证; 如果FC=1cm,求正方形ABCD的边长就这个图