设数列an的前n项和Sn=2an-1(n+1,2,3……),数列bn满足b1=3,bk+1=ak+bk(k=1,2……),求数列bn的前n项
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 00:21:02
设数列an的前n项和Sn=2an-1(n+1,2,3……),数列bn满足b1=3,bk+1=ak+bk(k=1,2……),求数列bn的前n项
设数列an的前n项和Sn=2an-1(n+1,2,3……),数列bn满足b1=3,bk+1=ak+bk(k=1,2……),求数列bn的前n项
设数列an的前n项和Sn=2an-1(n+1,2,3……),数列bn满足b1=3,bk+1=ak+bk(k=1,2……),求数列bn的前n项
S1=a1=2(a1)-1 a1=1
S(n-1)=2a(n-1)-1
an=Sn-S(n-1)=2an-2a(n-1)
an=2a(n-1)
an=a1*2^(n-1)=2^(n-1)
b(k+1)=2^(k-1)+bk
bk-b(k-1)=2^(k-2)
b(k-1)-b(k-2)=2^(k-3)
…………………………
b2-b1=2^0=1
以上各式左右相加:
bk-b1=1+2+2^2+……+2^(k-2)=2^(k-1)-1
bk=2^(k-1)+2
前n项和:
Tn=b1+b2+……+bn
=2n+[1+2+2^2+……+2^(n-1)]
=2n+2^n-1
=2^n+2n-1
S(n-1)=2a(n-1)-1 S1=a1=2(a1)-1 a1=1
an=Sn-S(n-1)=2an-2a(n-1)
an=2a(n-1)
an=a1*2^(n-1)=2^(n-1)
2.b(k+1)=2^(k-1)+bk
bk=2^(k-2)+b(k-1)
bk/(2^k)=(1/2)*(b(k-1)/(2^(k-1)))+1/4
数列{an},中,a1=1/3,设Sn为数列{an}的前n项和,Sn=n(2n-1)an 求Sn
设数列an的前n项和为Sn,若Sn=1-2an/3,则an=
设数列an的前n项和Sn.且Sn=2an-2,n属于正整数,(1)求数列an的通项公式,(2)设cn=n/an,求数列的前n项和Tn设数列an的前n项和Sn.且Sn=2an-2,n属于正整数,(1)求数列an的通项公式,(2)设cn=n/an,求数列的前n项和Tn
已知数列{an}的通项公式an=log2[(n+1)/(n+2)](n∈N),设其前n项的和为Sn,则使Sn
设数列an的前n项和为Sn,且2an=Sn+2n+1 求a1 a2 a3 求证:数列{an+2}是等比数列 求数列{n*an}的前n项和Tn
设数列an的前n项和为Sn,且2an=Sn+2n+1 求a1 a2 a3 求证:数列{an+2}是等比数列 求数列{n*an}的前n项和Tn
数列{an}的通项公式an=log2(n+1)-log2(n+2),设{an}的前n项和为Sn,则使Sn
数列{an}的通项公式an=log2(n+1)-log2(n+2),设{an}的前n项和为Sn,则使Sn
设数列{an}的前n项和为Sn,若Sn=1-2/3an,n∈N*,则an=
设数列{an}的前n项和Sn=2an-2^n,1;求a3,a4
高中数学. 设Sn是数列{an}的前n项和,且Sn=2an+n (1)证明:数列{an-1}是等高中数学. 设Sn是数列{an}的前n项和,且Sn=2an+n (1)证明:数列{an-1}是等比数列 (2)数列{bn}满足bn=1/(2-an),证明:b1+b2+.+bn<1
设数列{an}的前n项和为Sn,若a1=1,Sn=2an+Sn+(n∈N+),则a6=
设Sn是数列an的前n项和,已知a1=1,an=-Sn*Sn-1,(n大于等于2),则Sn=
设数列an的首项a1等于1,前n项和为sn,sn+1=2n设数列an的首项a1等于1,前n项和为sn,sn+1=2n
数列{an}中,an=-2n+2*(-1)^n,则数列{an}的前n项和sn为
设数列{an}中前n项的和Sn=2an+3n-7则an=
设数列{an}中前n项的和Sn=2an+3n-7,则an=
设数列{an}的前n项和为Sn,已知Sn=2an-2n+1,(n为下标,n+1为上标),求通项公式?