已知函数f(x)=(根号1+x)-x求函数f(x)的值域.若g(x)=(根号1-x)+x,判断函数F(x)=lg(f(x)/g(x))的奇偶性若函数y=f(ax)在区间(-1,1)上存在零点,求实数a的取值范围
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 01:36:04
已知函数f(x)=(根号1+x)-x求函数f(x)的值域.若g(x)=(根号1-x)+x,判断函数F(x)=lg(f(x)/g(x))的奇偶性若函数y=f(ax)在区间(-1,1)上存在零点,求实数a的取值范围
已知函数f(x)=(根号1+x)-x
求函数f(x)的值域.
若g(x)=(根号1-x)+x,判断函数F(x)=lg(f(x)/g(x))的奇偶性
若函数y=f(ax)在区间(-1,1)上存在零点,求实数a的取值范围
已知函数f(x)=(根号1+x)-x求函数f(x)的值域.若g(x)=(根号1-x)+x,判断函数F(x)=lg(f(x)/g(x))的奇偶性若函数y=f(ax)在区间(-1,1)上存在零点,求实数a的取值范围
第二问:
将-x代入F(x),
若F(-x)=-F(x),F(x)是奇函数;
若F(-x)=F(x),F(x)是偶函数;
若F(-x)≠-F(x)、F(-x)≠F(x),F(x)是非奇非偶函数.
简单计算而已.
第三问:
以ax代替f(x)中的x,得到f(ax)
然后,令f(ax)=0,
依据二次根式、分母等的性质,即可得到a的范围.
同样简单.
不再赘述,留给楼主做练习吧.
已知函数f(x)=(1+x)^1/2-x求函数f(x)的值域。 若g(x)=(1-x)1/2+x,判断函数F(x)=lg(f(x)/g(x))的奇偶性 若函数y=f(ax)在区间(-1,1)上存在零点,求实数a的取值范围 求详细过程 解析:(1)函数f(x)=(1+x)^1/2-x的定义域为[-1,+∞); ∵f(x)=(1+x)^1/2-x, ∴f’(x)=1/2(1+x)1/2-1=(1-2(1+x)^1/2)/(1+x)^-1/2, 令f’(x)=0,则(1-2(1+x)^1/2)=0,解得x=-3/4, ∵当x∈[-1,-3/4),f’(x)>0,f(x)单调递增; 当x∈(-3/4,+∞),f’(x)<0,f(x)单调递减; ∴x=-3/4时,函数f(x)=(1+x)1/2-x有最值,f(x)max=f(-3/4)=(1-3/4)1/2+3/4=5/4,f(-1)=(1-1)^1/2+1=1,f( +∞)=limf(x)(x→+∞)=lim{(1+x)^1/2-x}(x→+∞)=-∞, ∴函数f(x)=(1+x)1/2-x的值域为(-∞,5/4]。 (2)∵g(x)=(1-x)1/2+x,∴F(x)=lg(f(x)/g(x))=lg[((1+x)1/2-x)/((1-x)1/2+x))],∴F(-x)=lg[((1-x)1/2+x)/((1+x)1/2-x))],∴F(x)+F(-x)=lg[((1+x)1/2-x)/((1-x)1/2+x))]+lg[((1-x)1/2+x)/((1+x)1/2-x))]=lg{[((1+x)1/2-x)/((1-x)1/2+x))][((1-x)1/2+x)/((1+x)1/2-x))]}=lg1=0,∴F(-x)=-F(x),即函数F(x)=lg(f(x)/g(x))是奇函数。 (3)函数y=f(ax)在区间(-1,1)上存在零点,求实数a的取值范围,y=f(ax)=(1+ax)^1/2-ax=(1+ax)^1/2-(ax+1)+1=-[(ax+1)^1/2-1/2]2+5/4, Y=0,-[(ax+1)^1/2-1/2]2+5/4=0,(ax+1)^1/2-1/2=±√5/2,(ax+1)^1/2=(1±√5)/2(负值舍去),(ax+1)1/2=(1+√5)/2, ax+1=(3+√5)/2,ax=(1+√5)/2, ∵x=0,前式恒不成立,∴x≠0,∴a=(1+√5)/2x, 求a的范围,就是求y=(1+√5)/2x,x∈(-1,0)∪(0,1)的值域;y=(1+√5)/2x,在x∈(-1,0)∪(0,1)上是减函数,y∈(-∞,-(1+√5)/2)∪((1+√5)/2,+∞),∴a∈(-∞,-(1+√5)/2)∪((1+√5)/2,+∞)。